Theory "HolSmt"

Parents     transc   Omega   int_arith   blast   bitstring

Signature

Constant Type
array_ext :(α -> β) -> (α -> β) -> α
xor :bool reln

Definitions

xor_def
|- ∀x y. xor x y ⇔ (x ⇎ y)
array_ext_def
|- ∀A B. array_ext A B = @i. A i ≠ B i


Theorems

ALL_DISTINCT_NIL
|- ALL_DISTINCT [] ⇔ T
ALL_DISTINCT_CONS
|- ∀h t. ALL_DISTINCT (h::t) ⇔ ¬MEM h t ∧ ALL_DISTINCT t
NOT_MEM_NIL
|- ∀x. ¬MEM x [] ⇔ T
NOT_MEM_CONS
|- ∀x h t. ¬MEM x (h::t) ⇔ x ≠ h ∧ ¬MEM x t
AND_T
|- ∀p. p ∧ T ⇔ p
T_AND
|- ∀p q. (T ∧ p ⇔ T ∧ q) ⇒ (p ⇔ q)
F_OR
|- ∀p q. (F ∨ p ⇔ F ∨ q) ⇒ (p ⇔ q)
CONJ_CONG
|- ∀p q r s. (p ⇔ q) ⇒ (r ⇔ s) ⇒ (p ∧ r ⇔ q ∧ s)
NOT_NOT_ELIM
|- ∀p. ¬ ¬p ⇒ p
NOT_FALSE
|- ∀p. p ⇒ ¬p ⇒ F
NNF_CONJ
|- ∀p q r s. (¬p ⇔ r) ⇒ (¬q ⇔ s) ⇒ (¬(p ∧ q) ⇔ r ∨ s)
NNF_DISJ
|- ∀p q r s. (¬p ⇔ r) ⇒ (¬q ⇔ s) ⇒ (¬(p ∨ q) ⇔ r ∧ s)
NNF_NOT_NOT
|- ∀p q. (p ⇔ q) ⇒ (¬ ¬p ⇔ q)
NEG_IFF_1_1
|- ∀p q. (q ⇔ p) ⇒ (p ⇎ ¬q)
NEG_IFF_1_2
|- ∀p q. (p ⇎ ¬q) ⇒ (q ⇔ p)
NEG_IFF_2_1
|- ∀p q. (p ⇔ ¬q) ⇒ (p ⇎ q)
NEG_IFF_2_2
|- ∀p q. (p ⇎ q) ⇒ (p ⇔ ¬q)
DISJ_ELIM_1
|- ∀p q r. (p ∨ q ⇒ r) ⇒ p ⇒ r
DISJ_ELIM_2
|- ∀p q r. (p ∨ q ⇒ r) ⇒ q ⇒ r
IMP_DISJ_1
|- ∀p q. (p ⇒ q) ⇒ ¬p ∨ q
IMP_DISJ_2
|- ∀p q. (¬p ⇒ q) ⇒ p ∨ q
IMP_FALSE
|- ∀p. (¬p ⇒ F) ⇒ p
AND_IMP_INTRO_SYM
|- ∀p q r. p ∧ q ⇒ r ⇔ p ⇒ q ⇒ r
VALID_IFF_TRUE
|- ∀p. p ⇒ (p ⇔ T)
d001
|- (p ⇎ q) ∨ ¬p ∨ q
d002
|- (p ⇎ q) ∨ p ∨ ¬q
d003
|- (p ⇔ ¬q) ∨ ¬p ∨ q
d004
|- (¬p ⇔ q) ∨ p ∨ ¬q
d005
|- (p ⇔ q) ∨ ¬p ∨ ¬q
d006
|- (p ⇔ q) ∨ p ∨ q
d007
|- (¬p ⇎ q) ∨ p ∨ q
d008
|- (p ⇎ ¬q) ∨ p ∨ q
d009
|- ¬p ∨ q ∨ (p ⇎ q)
d010
|- p ∨ ¬q ∨ (p ⇎ q)
d011
|- p ∨ q ∨ (¬p ⇎ q)
d012
|- p ∨ q ∨ (p ⇎ ¬q)
d013
|- ¬p ∧ ¬q ∨ p ∨ q
d014
|- ¬p ∧ q ∨ p ∨ ¬q
d015
|- p ∧ ¬q ∨ ¬p ∨ q
d016
|- p ∧ q ∨ ¬p ∨ ¬q
d017
|- p ∨ (y = if p then x else y)
d018
|- ¬p ∨ (x = if p then x else y)
d019
|- p ∨ ((if p then x else y) = y)
d020
|- ¬p ∨ ((if p then x else y) = x)
d021
|- p ∨ q ∨ ¬if p then r else q
d022
|- ¬p ∨ q ∨ ¬if p then q else r
d023
|- (if p then q else r) ∨ ¬p ∨ ¬q
d024
|- (if p then q else r) ∨ p ∨ ¬r
d025
|- (if p then ¬q else r) ∨ ¬p ∨ q
d026
|- (if p then q else ¬r) ∨ p ∨ r
d027
|- ¬(if p then q else r) ∨ ¬p ∨ q
d028
|- ¬(if p then q else r) ∨ p ∨ r
r001
|- (x = y) ⇔ (y = x)
r002
|- (x = x) ⇔ T
r003
|- (p ⇔ T) ⇔ p
r004
|- (T ⇔ p) ⇔ p
r005
|- (p ⇔ F) ⇔ ¬p
r006
|- (F ⇔ p) ⇔ ¬p
r007
|- (¬p ⇔ ¬q) ⇔ (p ⇔ q)
r008
|- (p ⇎ ¬q) ⇔ (p ⇔ q)
r009
|- (¬p ⇎ q) ⇔ (p ⇔ q)
r010
|- (if T then x else y) = x
r011
|- (if F then x else y) = y
r012
|- (if p then q else T) ⇔ ¬p ∨ q
r013
|- (if p then q else T) ⇔ q ∨ ¬p
r014
|- (if p then q else ¬q) ⇔ (p ⇔ q)
r015
|- (if p then q else ¬q) ⇔ (q ⇔ p)
r016
|- (if p then ¬q else q) ⇔ (p ⇔ ¬q)
r017
|- (if p then ¬q else q) ⇔ (¬q ⇔ p)
r018
|- (if ¬p then x else y) = if p then y else x
r019
|- (if p then if q then x else y else x) = if p ∧ ¬q then y else x
r020
|- (if p then if q then x else y else x) = if ¬q ∧ p then y else x
r021
|- (if p then if q then x else y else y) = if p ∧ q then x else y
r022
|- (if p then if q then x else y else y) = if q ∧ p then x else y
r023
|- (if p then x else if p then y else z) = if p then x else z
r024
|- (if p then x else if q then x else y) = if p ∨ q then x else y
r025
|- (if p then x else if q then x else y) = if q ∨ p then x else y
r026
|- (if p then x = y else (x = z)) ⇔ (x = if p then y else z)
r027
|- (if p then x = y else (y = z)) ⇔ (y = if p then x else z)
r028
|- (if p then x = y else (z = y)) ⇔ (y = if p then x else z)
r029
|- ¬p ⇒ q ⇔ p ∨ q
r030
|- ¬p ⇒ q ⇔ q ∨ p
r031
|- p ⇒ q ⇔ ¬p ∨ q
r032
|- p ⇒ q ⇔ q ∨ ¬p
r033
|- T ⇒ p ⇔ p
r034
|- p ⇒ T ⇔ T
r035
|- F ⇒ p ⇔ T
r036
|- p ⇒ p ⇔ T
r037
|- (p ⇔ q) ⇒ r ⇔ r ∨ (q ⇔ ¬p)
r038
|- ¬T ⇔ F
r039
|- ¬F ⇔ T
r040
|- ¬ ¬p ⇔ p
r041
|- p ∨ q ⇔ q ∨ p
r042
|- p ∨ T ⇔ T
r043
|- p ∨ ¬p ⇔ T
r044
|- ¬p ∨ p ⇔ T
r045
|- T ∨ p ⇔ T
r046
|- p ∨ F ⇔ p
r047
|- F ∨ p ⇔ p
r048
|- p ∧ q ⇔ q ∧ p
r049
|- p ∧ T ⇔ p
r050
|- T ∧ p ⇔ p
r051
|- p ∧ F ⇔ F
r052
|- F ∧ p ⇔ F
r053
|- p ∧ q ⇔ ¬(¬p ∨ ¬q)
r054
|- ¬p ∧ q ⇔ ¬(p ∨ ¬q)
r055
|- p ∧ ¬q ⇔ ¬(¬p ∨ q)
r056
|- ¬p ∧ ¬q ⇔ ¬(p ∨ q)
r057
|- p ∧ q ⇔ ¬(¬q ∨ ¬p)
r058
|- ¬p ∧ q ⇔ ¬(¬q ∨ p)
r059
|- p ∧ ¬q ⇔ ¬(q ∨ ¬p)
r060
|- ¬p ∧ ¬q ⇔ ¬(q ∨ p)
r061
|- (x =+ f x) f = f
r062
|- ALL_DISTINCT [x; x] ⇔ F
r063
|- ALL_DISTINCT [x; y] ⇔ x ≠ y
r064
|- ALL_DISTINCT [x; y] ⇔ y ≠ x
r065
|- (x = y) ⇔ (x + -1 * y = 0)
r066
|- (x = y + z) ⇔ (x + -1 * z = y)
r067
|- (x = y + -1 * z) ⇔ (x + (-1 * y + z) = 0)
r068
|- (x = -1 * y + z) ⇔ (y + (-1 * z + x) = 0)
r069
|- (x = y + z) ⇔ (x + (-1 * y + -1 * z) = 0)
r070
|- (x = y + z) ⇔ (y + (z + -1 * x) = 0)
r071
|- (x = y + z) ⇔ (y + (-1 * x + z) = 0)
r072
|- (x = y + z) ⇔ (z + -1 * x = -y)
r073
|- (x = -y + z) ⇔ (z + -1 * x = y)
r074
|- (-1 * x = -y) ⇔ (x = y)
r075
|- (-1 * x + y = z) ⇔ (x + -1 * y = -z)
r076
|- (x + y = 0) ⇔ (y = -x)
r077
|- (x + y = z) ⇔ (y + -1 * z = -x)
r078
|- (a + (-1 * x + (v * y + w * z)) = 0) ⇔ (x + (-v * y + -w * z) = a)
r079
|- 0 + x = x
r080
|- x + 0 = x
r081
|- x + y = y + x
r082
|- x + x = 2 * x
r083
|- x + y + z = x + (y + z)
r084
|- x + y + z = x + (z + y)
r085
|- x + (y + z) = y + (z + x)
r086
|- x + (y + z) = y + (x + z)
r087
|- x + (y + (z + u)) = y + (z + (u + x))
r088
|- x ≥ x ⇔ T
r089
|- x ≥ y ⇔ x + -1 * y ≥ 0
r090
|- x ≥ y ⇔ y + -1 * x ≤ 0
r091
|- x ≥ y + z ⇔ y + (z + -1 * x) ≤ 0
r092
|- -1 * x ≥ 0 ⇔ x ≤ 0
r093
|- -1 * x ≥ -y ⇔ x ≤ y
r094
|- -1 * x + y ≥ 0 ⇔ x + -1 * y ≤ 0
r095
|- x + -1 * y ≥ 0 ⇔ y ≤ x
r096
|- x > y ⇔ ¬(y ≥ x)
r097
|- x > y ⇔ ¬(x ≤ y)
r098
|- x > y ⇔ ¬(x + -1 * y ≤ 0)
r099
|- x > y ⇔ ¬(y + -1 * x ≥ 0)
r100
|- x > y + z ⇔ ¬(z + -1 * x ≥ -y)
r101
|- x ≤ x ⇔ T
r102
|- 0 ≤ 1 ⇔ T
r103
|- x ≤ y ⇔ y ≥ x
r104
|- 0 ≤ -x + y ⇔ y ≥ x
r105
|- -1 * x ≤ 0 ⇔ x ≥ 0
r106
|- x ≤ y ⇔ x + -1 * y ≤ 0
r107
|- x ≤ y ⇔ y + -1 * x ≥ 0
r108
|- -1 * x + y ≤ 0 ⇔ x + -1 * y ≥ 0
r109
|- -1 * x + y ≤ -z ⇔ x + -1 * y ≥ z
r110
|- -x + y ≤ z ⇔ y + -1 * z ≤ x
r111
|- x + -1 * y ≤ z ⇔ x + (-1 * y + -1 * z) ≤ 0
r112
|- x ≤ y + z ⇔ x + -1 * z ≤ y
r113
|- x ≤ y + z ⇔ z + -1 * x ≥ -y
r114
|- x ≤ y + z ⇔ x + (-1 * y + -1 * z) ≤ 0
r115
|- x < y ⇔ ¬(y ≤ x)
r116
|- x < y ⇔ ¬(x ≥ y)
r117
|- x < y ⇔ ¬(y + -1 * x ≤ 0)
r118
|- x < y ⇔ ¬(x + -1 * y ≥ 0)
r119
|- x < y + -1 * z ⇔ ¬(x + -1 * y + z ≥ 0)
r120
|- x < y + -1 * z ⇔ ¬(x + (-1 * y + z) ≥ 0)
r121
|- x < -y + z ⇔ ¬(z + -1 * x ≤ y)
r122
|- x < -y + (z + u) ⇔ ¬(z + (u + -1 * x) ≤ y)
r123
|- x < -y + (z + (u + v)) ⇔ ¬(z + (u + (v + -1 * x)) ≤ y)
r124
|- -x + y < z ⇔ ¬(y + -1 * z ≥ x)
r125
|- x + y < z ⇔ ¬(z + -1 * y ≤ x)
r126
|- 0 < -x + y ⇔ ¬(y ≤ x)
r127
|- x − 0 = x
r128
|- 0 − x = -x
r129
|- 0 − x = -1 * x
r130
|- x − y = -y + x
r131
|- x − y = x + -1 * y
r132
|- x − y = -1 * y + x
r133
|- x − 1 = -1 + x
r134
|- x + y − z = x + (y + -1 * z)
r135
|- x + y − z = x + (-1 * z + y)
r136
|- (0 = -u * x) ⇔ (u * x = 0)
r137
|- (a = -u * x) ⇔ (u * x = -a)
r138
|- (a = x + (y + z)) ⇔ (x + (y + (-1 * a + z)) = 0)
r139
|- (a = x + (y + z)) ⇔ (x + (y + (z + -1 * a)) = 0)
r140
|- (a = -u * y + v * z) ⇔ (u * y + (-v * z + a) = 0)
r141
|- (a = -u * y + -v * z) ⇔ (u * y + (a + v * z) = 0)
r142
|- (-a = -u * x + v * y) ⇔ (u * x + -v * y = a)
r143
|- (a = -u * x + (-v * y + w * z)) ⇔ (u * x + (v * y + (-w * z + a)) = 0)
r144
|- (a = -u * x + (v * y + w * z)) ⇔ (u * x + (-v * y + -w * z) = -a)
r145
|- (a = -u * x + (v * y + -w * z)) ⇔ (u * x + (-v * y + w * z) = -a)
r146
|- (a = -u * x + (-v * y + w * z)) ⇔ (u * x + (v * y + -w * z) = -a)
r147
|- (a = -u * x + (-v * y + -w * z)) ⇔ (u * x + (v * y + w * z) = -a)
r148
|- (-a = -u * x + (v * y + w * z)) ⇔ (u * x + (-v * y + -w * z) = a)
r149
|- (-a = -u * x + (v * y + -w * z)) ⇔ (u * x + (-v * y + w * z) = a)
r150
|- (-a = -u * x + (-v * y + w * z)) ⇔ (u * x + (v * y + -w * z) = a)
r151
|- (-a = -u * x + (-v * y + -w * z)) ⇔ (u * x + (v * y + w * z) = a)
r152
|- (a = -u * x + (-1 * y + w * z)) ⇔ (u * x + (y + -w * z) = -a)
r153
|- (a = -u * x + (-1 * y + -w * z)) ⇔ (u * x + (y + w * z) = -a)
r154
|- (-u * x + -v * y = -a) ⇔ (u * x + v * y = a)
r155
|- (-1 * x + (-v * y + -w * z) = -a) ⇔ (x + (v * y + w * z) = a)
r156
|- (-u * x + (v * y + w * z) = -a) ⇔ (u * x + (-v * y + -w * z) = a)
r157
|- (-u * x + (-v * y + w * z) = -a) ⇔ (u * x + (v * y + -w * z) = a)
r158
|- (-u * x + (-v * y + -w * z) = -a) ⇔ (u * x + (v * y + w * z) = a)
r159
|- x + -1 * y ≥ 0 ⇔ y ≤ x
r160
|- x ≥ y ⇔ x + -1 * y ≥ 0
r161
|- x > y ⇔ ¬(x + -1 * y ≤ 0)
r162
|- x ≤ y ⇔ x + -1 * y ≤ 0
r163
|- x ≤ y + z ⇔ x + -1 * z ≤ y
r164
|- -u * x ≤ a ⇔ u * x ≥ -a
r165
|- -u * x ≤ -a ⇔ u * x ≥ a
r166
|- -u * x + v * y ≤ 0 ⇔ u * x + -v * y ≥ 0
r167
|- -u * x + v * y ≤ a ⇔ u * x + -v * y ≥ -a
r168
|- -u * x + v * y ≤ -a ⇔ u * x + -v * y ≥ a
r169
|- -u * x + -v * y ≤ a ⇔ u * x + v * y ≥ -a
r170
|- -u * x + -v * y ≤ -a ⇔ u * x + v * y ≥ a
r171
|- -u * x + (v * y + w * z) ≤ 0 ⇔ u * x + (-v * y + -w * z) ≥ 0
r172
|- -u * x + (v * y + -w * z) ≤ 0 ⇔ u * x + (-v * y + w * z) ≥ 0
r173
|- -u * x + (-v * y + w * z) ≤ 0 ⇔ u * x + (v * y + -w * z) ≥ 0
r174
|- -u * x + (-v * y + -w * z) ≤ 0 ⇔ u * x + (v * y + w * z) ≥ 0
r175
|- -u * x + (v * y + w * z) ≤ a ⇔ u * x + (-v * y + -w * z) ≥ -a
r176
|- -u * x + (v * y + w * z) ≤ -a ⇔ u * x + (-v * y + -w * z) ≥ a
r177
|- -u * x + (v * y + -w * z) ≤ a ⇔ u * x + (-v * y + w * z) ≥ -a
r178
|- -u * x + (v * y + -w * z) ≤ -a ⇔ u * x + (-v * y + w * z) ≥ a
r179
|- -u * x + (-v * y + w * z) ≤ a ⇔ u * x + (v * y + -w * z) ≥ -a
r180
|- -u * x + (-v * y + w * z) ≤ -a ⇔ u * x + (v * y + -w * z) ≥ a
r181
|- -u * x + (-v * y + -w * z) ≤ a ⇔ u * x + (v * y + w * z) ≥ -a
r182
|- -u * x + (-v * y + -w * z) ≤ -a ⇔ u * x + (v * y + w * z) ≥ a
r183
|- -1 * x + (v * y + w * z) ≤ -a ⇔ x + (-v * y + -w * z) ≥ a
r184
|- x < y ⇔ ¬(x ≥ y)
r185
|- -u * x < a ⇔ ¬(u * x ≤ -a)
r186
|- -u * x < -a ⇔ ¬(u * x ≤ a)
r187
|- -u * x + v * y < 0 ⇔ ¬(u * x + -v * y ≤ 0)
r188
|- -u * x + -v * y < 0 ⇔ ¬(u * x + v * y ≤ 0)
r189
|- -u * x + v * y < a ⇔ ¬(u * x + -v * y ≤ -a)
r190
|- -u * x + v * y < -a ⇔ ¬(u * x + -v * y ≤ a)
r191
|- -u * x + -v * y < a ⇔ ¬(u * x + v * y ≤ -a)
r192
|- -u * x + -v * y < -a ⇔ ¬(u * x + v * y ≤ a)
r193
|- -u * x + (v * y + w * z) < a ⇔ ¬(u * x + (-v * y + -w * z) ≤ -a)
r194
|- -u * x + (v * y + w * z) < -a ⇔ ¬(u * x + (-v * y + -w * z) ≤ a)
r195
|- -u * x + (v * y + -w * z) < a ⇔ ¬(u * x + (-v * y + w * z) ≤ -a)
r196
|- -u * x + (v * y + -w * z) < -a ⇔ ¬(u * x + (-v * y + w * z) ≤ a)
r197
|- -u * x + (-v * y + w * z) < a ⇔ ¬(u * x + (v * y + -w * z) ≤ -a)
r198
|- -u * x + (-v * y + w * z) < -a ⇔ ¬(u * x + (v * y + -w * z) ≤ a)
r199
|- -u * x + (-v * y + -w * z) < a ⇔ ¬(u * x + (v * y + w * z) ≤ -a)
r200
|- -u * x + (-v * y + -w * z) < -a ⇔ ¬(u * x + (v * y + w * z) ≤ a)
r201
|- -u * x + (-v * y + w * z) < 0 ⇔ ¬(u * x + (v * y + -w * z) ≤ 0)
r202
|- -u * x + (-v * y + -w * z) < 0 ⇔ ¬(u * x + (v * y + w * z) ≤ 0)
r203
|- -1 * x + (v * y + w * z) < a ⇔ ¬(x + (-v * y + -w * z) ≤ -a)
r204
|- -1 * x + (v * y + w * z) < -a ⇔ ¬(x + (-v * y + -w * z) ≤ a)
r205
|- -1 * x + (v * y + -w * z) < a ⇔ ¬(x + (-v * y + w * z) ≤ -a)
r206
|- -1 * x + (v * y + -w * z) < -a ⇔ ¬(x + (-v * y + w * z) ≤ a)
r207
|- -1 * x + (-v * y + w * z) < a ⇔ ¬(x + (v * y + -w * z) ≤ -a)
r208
|- -1 * x + (-v * y + w * z) < -a ⇔ ¬(x + (v * y + -w * z) ≤ a)
r209
|- -1 * x + (-v * y + -w * z) < a ⇔ ¬(x + (v * y + w * z) ≤ -a)
r210
|- -1 * x + (-v * y + -w * z) < -a ⇔ ¬(x + (v * y + w * z) ≤ a)
r211
|- -u * x + (-1 * y + -w * z) < -a ⇔ ¬(u * x + (y + w * z) ≤ a)
r212
|- -u * x + (v * y + -1 * z) < -a ⇔ ¬(u * x + (-v * y + z) ≤ a)
r213
|- 0 + x = x
r214
|- x + 0 = x
r215
|- x + y = y + x
r216
|- x + x = 2 * x
r217
|- x + y + z = x + (y + z)
r218
|- x + y + z = x + (z + y)
r219
|- x + (y + z) = y + (z + x)
r220
|- x + (y + z) = y + (x + z)
r221
|- 0 − x = -x
r222
|- 0 − u * x = -u * x
r223
|- x − 0 = x
r224
|- x − y = x + -1 * y
r225
|- x − y = -1 * y + x
r226
|- x − u * y = x + -u * y
r227
|- x − u * y = -u * y + x
r228
|- x + y − z = x + (y + -1 * z)
r229
|- x + y − z = x + (-1 * z + y)
r230
|- x + y − u * z = -u * z + (x + y)
r231
|- x + y − u * z = x + (-u * z + y)
r232
|- x + y − u * z = x + (y + -u * z)
r233
|- 0 * x = 0
r234
|- 1 * x = x
r235
|- 0w + x = x
r236
|- x + y = y + x
r237
|- 1w + (1w + x) = 2w + x
r238
|- (x + z = y + x) ⇔ (y = z)
r239
 [..] |- 0w @@ n2w x = n2w x
r240
 [.] |- w2w (n2w x) = n2w x
r241
 [...] |- (0w @@ x = n2w y) ⇔ (x = n2w y)
r242
 [...] |- (0w @@ x = n2w y) ⇔ (n2w y = x)
r243
 [...] |- (n2w y = 0w @@ x) ⇔ (x = n2w y)
r244
 [...] |- (n2w y = 0w @@ x) ⇔ (n2w y = x)
r245
|- x && y = y && x
r246
|- x && y && z = y && x && z
r247
|- x && y && z = (x && y) && z
r248
|- (1w = x && y) ⇔ (1w = x) ∧ (1w = y)
r249
|- (1w = x && y) ⇔ (1w = y) ∧ (1w = x)
r250
|- (7 >< 0) x = x
r251
|- x <₊ y ⇔ ¬(y ≤₊ x)
r252
|- x * y = y * x
r253
|- (0 >< 0) x = x
r254
|- (x && y) && z = x && y && z
r255
|- 0w ‖ x = x
t001
|- (x = y) ∨ (f x = (y =+ z) f x)
t002
|- (x = y) ∨ (f y = (x =+ z) f y)
t003
|- (x = y) ∨ ((y =+ z) f x = f x)
t004
|- (x = y) ∨ ((x =+ z) f y = f y)
t005
|- (f = g) ∨ f (array_ext f g) ≠ g (array_ext f g)
t006
|- x ≠ y ∨ x ≤ y
t007
|- x ≠ y ∨ x ≥ y
t008
|- x ≠ y ∨ x + -1 * y ≥ 0
t009
|- x ≠ y ∨ x + -1 * y ≤ 0
t010
|- (x = y) ∨ ¬(x ≤ y) ∨ ¬(x ≥ y)
t011
|- ¬(x ≤ 0) ∨ x ≤ 1
t012
|- ¬(x ≤ -1) ∨ x ≤ 0
t013
|- ¬(x ≥ 0) ∨ x ≥ -1
t014
|- ¬(x ≥ 0) ∨ ¬(x ≤ -1)
t015
|- x ≥ y ∨ x ≤ y
t016
|- x ≠ y ∨ x + -1 * y ≥ 0
t017
|- x ≠ ¬x
t018
|- (x = y) ⇒ x ' i ⇒ y ' i
t019
|- (1w = ¬x) ∨ x ' 0
t020
|- x ' 0 ⇒ (0w = ¬x)
t021
|- x ' 0 ⇒ (1w = x)
t022
|- ¬x ' 0 ⇒ (0w = x)
t023
|- ¬x ' 0 ⇒ (1w = ¬x)
t024
|- (0w = ¬x) ∨ ¬x ' 0
t025
|- (1w = ¬x ‖ ¬y) ∨ ¬(¬x ' 0 ∨ ¬y ' 0)
t026
|- (0w = x) ∨ x ' 0 ∨ x ' 1 ∨ x ' 2 ∨ x ' 3 ∨ x ' 4 ∨ x ' 5 ∨ x ' 6 ∨ x ' 7
t027
|- ((x = 1w) ⇔ p) ⇔ (x = if p then 1w else 0w)
t028
|- ((1w = x) ⇔ p) ⇔ (x = if p then 1w else 0w)
t029
|- (p ⇔ (x = 1w)) ⇔ (x = if p then 1w else 0w)
t030
|- (p ⇔ (1w = x)) ⇔ (x = if p then 1w else 0w)
t031
|- (0w = 4294967295w * sw2sw x) ⇒ ¬x ' 0
t032
|- (0w = 4294967295w * sw2sw x) ⇒ (x ' 1 ⇎ ¬x ' 0)
t033
|- (0w = 4294967295w * sw2sw x) ⇒ (x ' 2 ⇎ ¬x ' 0 ∧ ¬x ' 1)
t034
|- (1w + x = y) ⇒ x ' 0 ⇒ ¬y ' 0
t035
|- (1w = x) ∨ (0 >< 0) x ≠ 1w
p001
|- 0 < dimword (:α)
p002
|- 1 < dimword (:α)
p003
|- 255 < dimword (:8)
p004
|- FINITE 𝕌(:unit)
p005
|- FINITE 𝕌(:16)
p006
|- FINITE 𝕌(:24)
p007
|- FINITE 𝕌(:30)
p008
|- FINITE 𝕌(:31)
p009
|- dimindex (:8) ≤ dimindex (:32)