Theory "arithmetic"

Parents     prim_rec   pair

Signature

Constant Type
* :num -> num -> num
+ :num -> num -> num
- :num -> num -> num
<= :num reln
> :num reln
>= :num reln
ABS_DIFF :num -> num -> num
BIT1 :num -> num
BIT2 :num -> num
DIV :num -> num -> num
DIV2 :num -> num
DIVMOD :num # num # num -> num # num
EVEN :num -> bool
EXP :num -> num -> num
FACT :num -> num
FUNPOW :(α -> α) -> num -> α -> α
MAX :num -> num -> num
MIN :num -> num -> num
MOD :num -> num -> num
MODEQ :num -> num reln
NRC :α reln -> num -> α reln
NUMERAL :num -> num
ODD :num -> bool
ZERO :num
findq :num # num # num -> num
nat_elim__magic :num -> num
num_CASE :num -> α -> (num -> α) -> α

Definitions

ADD
|- (∀n. 0 + n = n) ∧ ∀m n. SUC m + n = SUC (m + n)
NUMERAL_DEF
|- ∀x. NUMERAL x = x
ALT_ZERO
|- ZERO = 0
BIT1
|- ∀n. BIT1 n = n + (n + SUC 0)
BIT2
|- ∀n. BIT2 n = n + (n + SUC (SUC 0))
nat_elim__magic
|- ∀n. &n = n
SUB
|- (∀m. 0 − m = 0) ∧ ∀m n. SUC m − n = if m < n then 0 else SUC (m − n)
MULT
|- (∀n. 0 * n = 0) ∧ ∀m n. SUC m * n = m * n + n
EXP
|- (∀m. m ** 0 = 1) ∧ ∀m n. m ** SUC n = m * m ** n
GREATER_DEF
|- ∀m n. m > n ⇔ n < m
LESS_OR_EQ
|- ∀m n. m ≤ n ⇔ m < n ∨ (m = n)
GREATER_OR_EQ
|- ∀m n. m ≥ n ⇔ m > n ∨ (m = n)
EVEN
|- (EVEN 0 ⇔ T) ∧ ∀n. EVEN (SUC n) ⇔ ¬EVEN n
ODD
|- (ODD 0 ⇔ F) ∧ ∀n. ODD (SUC n) ⇔ ¬ODD n
num_case_def
|- (∀v f. num_CASE 0 v f = v) ∧ ∀n v f. num_CASE (SUC n) v f = f n
FUNPOW
|- (∀f x. FUNPOW f 0 x = x) ∧ ∀f n x. FUNPOW f (SUC n) x = FUNPOW f n (f x)
NRC
|- (∀R x y. NRC R 0 x y ⇔ (x = y)) ∧
   ∀R n x y. NRC R (SUC n) x y ⇔ ∃z. R x z ∧ NRC R n z y
FACT
|- (FACT 0 = 1) ∧ ∀n. FACT (SUC n) = SUC n * FACT n
DIVISION
|- ∀n. 0 < n ⇒ ∀k. (k = k DIV n * n + k MOD n) ∧ k MOD n < n
DIV2_def
|- ∀n. DIV2 n = n DIV 2
MAX_DEF
|- ∀m n. MAX m n = if m < n then n else m
MIN_DEF
|- ∀m n. MIN m n = if m < n then m else n
ABS_DIFF_def
|- ∀n m. ABS_DIFF n m = if n < m then m − n else n − m
findq_def
|- findq =
   WFREC (measure (λ(a,m,n). m − n))
     (λf (a,m,n).
        if n = 0 then a
        else (let d = 2 * n in if m < d then a else f (2 * a,m,d)))
DIVMOD_DEF
|- DIVMOD =
   WFREC (measure (FST o SND))
     (λf (a,m,n).
        if n = 0 then (0,0)
        else if m < n then (a,m)
        else (let q = findq (1,m,n) in f (a + q,m − n * q,n)))
MODEQ_DEF
|- ∀n m1 m2. MODEQ n m1 m2 ⇔ ∃a b. a * n + m1 = b * n + m2


Theorems

ONE
|- 1 = SUC 0
TWO
|- 2 = SUC 1
NORM_0
|- 0 = 0
num_case_compute
|- ∀n. num_CASE n f g = if n = 0 then f else g (PRE n)
SUC_NOT
|- ∀n. 0 ≠ SUC n
ADD_0
|- ∀m. m + 0 = m
ADD_SUC
|- ∀m n. SUC (m + n) = m + SUC n
ADD_CLAUSES
|- (0 + m = m) ∧ (m + 0 = m) ∧ (SUC m + n = SUC (m + n)) ∧
   (m + SUC n = SUC (m + n))
ADD_SYM
|- ∀m n. m + n = n + m
ADD_COMM
|- ∀m n. m + n = n + m
ADD_ASSOC
|- ∀m n p. m + (n + p) = m + n + p
num_CASES
|- ∀m. (m = 0) ∨ ∃n. m = SUC n
NOT_ZERO_LT_ZERO
|- ∀n. n ≠ 0 ⇔ 0 < n
NOT_LT_ZERO_EQ_ZERO
|- ∀n. ¬(0 < n) ⇔ (n = 0)
LESS_ADD
|- ∀m n. n < m ⇒ ∃p. p + n = m
LESS_TRANS
|- ∀m n p. m < n ∧ n < p ⇒ m < p
transitive_LESS
|- transitive $<
LESS_ANTISYM
|- ∀m n. ¬(m < n ∧ n < m)
LESS_LESS_SUC
|- ∀m n. ¬(m < n ∧ n < SUC m)
transitive_measure
|- ∀f. transitive (measure f)
LESS_MONO_REV
|- ∀m n. SUC m < SUC n ⇒ m < n
LESS_MONO_EQ
|- ∀m n. SUC m < SUC n ⇔ m < n
LESS_OR
|- ∀m n. m < n ⇒ SUC m ≤ n
OR_LESS
|- ∀m n. SUC m ≤ n ⇒ m < n
LESS_EQ
|- ∀m n. m < n ⇔ SUC m ≤ n
LESS_SUC_EQ_COR
|- ∀m n. m < n ∧ SUC m ≠ n ⇒ SUC m < n
LESS_NOT_SUC
|- ∀m n. m < n ∧ n ≠ SUC m ⇒ SUC m < n
LESS_0_CASES
|- ∀m. (0 = m) ∨ 0 < m
LESS_CASES_IMP
|- ∀m n. ¬(m < n) ∧ m ≠ n ⇒ n < m
LESS_CASES
|- ∀m n. m < n ∨ n ≤ m
ADD_INV_0
|- ∀m n. (m + n = m) ⇒ (n = 0)
LESS_EQ_ADD
|- ∀m n. m ≤ m + n
LESS_EQ_ADD_EXISTS
|- ∀m n. n ≤ m ⇒ ∃p. p + n = m
LESS_STRONG_ADD
|- ∀m n. n < m ⇒ ∃p. SUC p + n = m
LESS_EQ_SUC_REFL
|- ∀m. m ≤ SUC m
LESS_ADD_NONZERO
|- ∀m n. n ≠ 0 ⇒ m < m + n
LESS_EQ_ANTISYM
|- ∀m n. ¬(m < n ∧ n ≤ m)
NOT_LESS
|- ∀m n. ¬(m < n) ⇔ n ≤ m
SUB_0
|- ∀m. (0 − m = 0) ∧ (m − 0 = m)
SUB_EQ_0
|- ∀m n. (m − n = 0) ⇔ m ≤ n
ADD1
|- ∀m. SUC m = m + 1
SUC_SUB1
|- ∀m. SUC m − 1 = m
PRE_SUB1
|- ∀m. PRE m = m − 1
MULT_0
|- ∀m. m * 0 = 0
MULT_SUC
|- ∀m n. m * SUC n = m + m * n
MULT_LEFT_1
|- ∀m. 1 * m = m
MULT_RIGHT_1
|- ∀m. m * 1 = m
MULT_CLAUSES
|- ∀m n.
     (0 * m = 0) ∧ (m * 0 = 0) ∧ (1 * m = m) ∧ (m * 1 = m) ∧
     (SUC m * n = m * n + n) ∧ (m * SUC n = m + m * n)
MULT_SYM
|- ∀m n. m * n = n * m
MULT_COMM
|- ∀m n. m * n = n * m
RIGHT_ADD_DISTRIB
|- ∀m n p. (m + n) * p = m * p + n * p
LEFT_ADD_DISTRIB
|- ∀m n p. p * (m + n) = p * m + p * n
MULT_ASSOC
|- ∀m n p. m * (n * p) = m * n * p
SUB_ADD
|- ∀m n. n ≤ m ⇒ (m − n + n = m)
PRE_SUB
|- ∀m n. PRE (m − n) = PRE m − n
ADD_EQ_0
|- ∀m n. (m + n = 0) ⇔ (m = 0) ∧ (n = 0)
ADD_EQ_1
|- ∀m n. (m + n = 1) ⇔ (m = 1) ∧ (n = 0) ∨ (m = 0) ∧ (n = 1)
ADD_INV_0_EQ
|- ∀m n. (m + n = m) ⇔ (n = 0)
PRE_SUC_EQ
|- ∀m n. 0 < n ⇒ ((m = PRE n) ⇔ (SUC m = n))
INV_PRE_EQ
|- ∀m n. 0 < m ∧ 0 < n ⇒ ((PRE m = PRE n) ⇔ (m = n))
LESS_SUC_NOT
|- ∀m n. m < n ⇒ ¬(n < SUC m)
ADD_EQ_SUB
|- ∀m n p. n ≤ p ⇒ ((m + n = p) ⇔ (m = p − n))
LESS_MONO_ADD
|- ∀m n p. m < n ⇒ m + p < n + p
LESS_MONO_ADD_INV
|- ∀m n p. m + p < n + p ⇒ m < n
LESS_MONO_ADD_EQ
|- ∀m n p. m + p < n + p ⇔ m < n
LT_ADD_RCANCEL
|- ∀m n p. m + p < n + p ⇔ m < n
LT_ADD_LCANCEL
|- ∀m n p. p + m < p + n ⇔ m < n
EQ_MONO_ADD_EQ
|- ∀m n p. (m + p = n + p) ⇔ (m = n)
LESS_EQ_MONO_ADD_EQ
|- ∀m n p. m + p ≤ n + p ⇔ m ≤ n
LESS_EQ_TRANS
|- ∀m n p. m ≤ n ∧ n ≤ p ⇒ m ≤ p
LESS_EQ_LESS_EQ_MONO
|- ∀m n p q. m ≤ p ∧ n ≤ q ⇒ m + n ≤ p + q
LESS_EQ_REFL
|- ∀m. m ≤ m
LESS_IMP_LESS_OR_EQ
|- ∀m n. m < n ⇒ m ≤ n
LESS_MONO_MULT
|- ∀m n p. m ≤ n ⇒ m * p ≤ n * p
LESS_MONO_MULT2
|- ∀m n i j. m ≤ i ∧ n ≤ j ⇒ m * n ≤ i * j
RIGHT_SUB_DISTRIB
|- ∀m n p. (m − n) * p = m * p − n * p
LEFT_SUB_DISTRIB
|- ∀m n p. p * (m − n) = p * m − p * n
LESS_ADD_1
|- ∀m n. n < m ⇒ ∃p. m = n + (p + 1)
EXP_ADD
|- ∀p q n. n ** (p + q) = n ** p * n ** q
NOT_ODD_EQ_EVEN
|- ∀n m. SUC (n + n) ≠ m + m
MULT_SUC_EQ
|- ∀p m n. (n * SUC p = m * SUC p) ⇔ (n = m)
MULT_EXP_MONO
|- ∀p q n m. (n * SUC q ** p = m * SUC q ** p) ⇔ (n = m)
LESS_EQUAL_ANTISYM
|- ∀n m. n ≤ m ∧ m ≤ n ⇒ (n = m)
LESS_ADD_SUC
|- ∀m n. m < m + SUC n
ZERO_LESS_EQ
|- ∀n. 0 ≤ n
LESS_EQ_MONO
|- ∀n m. SUC n ≤ SUC m ⇔ n ≤ m
LESS_OR_EQ_ADD
|- ∀n m. n < m ∨ ∃p. n = p + m
WOP
|- ∀P. (∃n. P n) ⇒ ∃n. P n ∧ ∀m. m < n ⇒ ¬P m
COMPLETE_INDUCTION
|- ∀P. (∀n. (∀m. m < n ⇒ P m) ⇒ P n) ⇒ ∀n. P n
FORALL_NUM_THM
|- (∀n. P n) ⇔ P 0 ∧ ∀n. P n ⇒ P (SUC n)
SUB_MONO_EQ
|- ∀n m. SUC n − SUC m = n − m
SUB_PLUS
|- ∀a b c. a − (b + c) = a − b − c
INV_PRE_LESS
|- ∀m. 0 < m ⇒ ∀n. PRE m < PRE n ⇔ m < n
INV_PRE_LESS_EQ
|- ∀n. 0 < n ⇒ ∀m. PRE m ≤ PRE n ⇔ m ≤ n
SUB_LESS_EQ
|- ∀n m. n − m ≤ n
SUB_EQ_EQ_0
|- ∀m n. (m − n = m) ⇔ (m = 0) ∨ (n = 0)
SUB_LESS_0
|- ∀n m. m < n ⇔ 0 < n − m
SUB_LESS_OR
|- ∀m n. n < m ⇒ n ≤ m − 1
LESS_SUB_ADD_LESS
|- ∀n m i. i < n − m ⇒ i + m < n
TIMES2
|- ∀n. 2 * n = n + n
LESS_MULT_MONO
|- ∀m i n. SUC n * m < SUC n * i ⇔ m < i
MULT_MONO_EQ
|- ∀m i n. (SUC n * m = SUC n * i) ⇔ (m = i)
EQ_ADD_LCANCEL
|- ∀m n p. (m + n = m + p) ⇔ (n = p)
EQ_ADD_RCANCEL
|- ∀m n p. (m + p = n + p) ⇔ (m = n)
EQ_MULT_LCANCEL
|- ∀m n p. (m * n = m * p) ⇔ (m = 0) ∨ (n = p)
ADD_SUB
|- ∀a c. a + c − c = a
LESS_EQ_ADD_SUB
|- ∀c b. c ≤ b ⇒ ∀a. a + b − c = a + (b − c)
SUB_EQUAL_0
|- ∀c. c − c = 0
LESS_EQ_SUB_LESS
|- ∀a b. b ≤ a ⇒ ∀c. a − b < c ⇔ a < b + c
NOT_SUC_LESS_EQ
|- ∀n m. ¬(SUC n ≤ m) ⇔ m ≤ n
SUB_SUB
|- ∀b c. c ≤ b ⇒ ∀a. a − (b − c) = a + c − b
LESS_IMP_LESS_ADD
|- ∀n m. n < m ⇒ ∀p. n < m + p
LESS_EQ_IMP_LESS_SUC
|- ∀n m. n ≤ m ⇒ n < SUC m
SUB_LESS_EQ_ADD
|- ∀m p. m ≤ p ⇒ ∀n. p − m ≤ n ⇔ p ≤ m + n
SUB_CANCEL
|- ∀p n m. n ≤ p ∧ m ≤ p ⇒ ((p − n = p − m) ⇔ (n = m))
CANCEL_SUB
|- ∀p n m. p ≤ n ∧ p ≤ m ⇒ ((n − p = m − p) ⇔ (n = m))
NOT_EXP_0
|- ∀m n. SUC n ** m ≠ 0
ZERO_LESS_EXP
|- ∀m n. 0 < SUC n ** m
ODD_OR_EVEN
|- ∀n. ∃m. (n = SUC (SUC 0) * m) ∨ (n = SUC (SUC 0) * m + 1)
LESS_EXP_SUC_MONO
|- ∀n m. SUC (SUC m) ** n < SUC (SUC m) ** SUC n
LESS_LESS_CASES
|- ∀m n. (m = n) ∨ m < n ∨ n < m
GREATER_EQ
|- ∀n m. n ≥ m ⇔ m ≤ n
LESS_EQ_CASES
|- ∀m n. m ≤ n ∨ n ≤ m
LESS_EQUAL_ADD
|- ∀m n. m ≤ n ⇒ ∃p. n = m + p
LESS_EQ_EXISTS
|- ∀m n. m ≤ n ⇔ ∃p. n = m + p
NOT_LESS_EQUAL
|- ∀m n. ¬(m ≤ n) ⇔ n < m
LESS_EQ_0
|- ∀n. n ≤ 0 ⇔ (n = 0)
MULT_EQ_0
|- ∀m n. (m * n = 0) ⇔ (m = 0) ∨ (n = 0)
MULT_EQ_1
|- ∀x y. (x * y = 1) ⇔ (x = 1) ∧ (y = 1)
MULT_EQ_ID
|- ∀m n. (m * n = n) ⇔ (m = 1) ∨ (n = 0)
LESS_MULT2
|- ∀m n. 0 < m ∧ 0 < n ⇒ 0 < m * n
ZERO_LESS_MULT
|- ∀m n. 0 < m * n ⇔ 0 < m ∧ 0 < n
ZERO_LESS_ADD
|- ∀m n. 0 < m + n ⇔ 0 < m ∨ 0 < n
LESS_EQ_LESS_TRANS
|- ∀m n p. m ≤ n ∧ n < p ⇒ m < p
LESS_LESS_EQ_TRANS
|- ∀m n p. m < n ∧ n ≤ p ⇒ m < p
FACT_LESS
|- ∀n. 0 < FACT n
EVEN_ODD
|- ∀n. EVEN n ⇔ ¬ODD n
ODD_EVEN
|- ∀n. ODD n ⇔ ¬EVEN n
EVEN_OR_ODD
|- ∀n. EVEN n ∨ ODD n
EVEN_AND_ODD
|- ∀n. ¬(EVEN n ∧ ODD n)
EVEN_ADD
|- ∀m n. EVEN (m + n) ⇔ (EVEN m ⇔ EVEN n)
EVEN_MULT
|- ∀m n. EVEN (m * n) ⇔ EVEN m ∨ EVEN n
ODD_ADD
|- ∀m n. ODD (m + n) ⇔ (ODD m ⇎ ODD n)
ODD_MULT
|- ∀m n. ODD (m * n) ⇔ ODD m ∧ ODD n
EVEN_DOUBLE
|- ∀n. EVEN (2 * n)
ODD_DOUBLE
|- ∀n. ODD (SUC (2 * n))
EVEN_ODD_EXISTS
|- ∀n. (EVEN n ⇒ ∃m. n = 2 * m) ∧ (ODD n ⇒ ∃m. n = SUC (2 * m))
EVEN_EXISTS
|- ∀n. EVEN n ⇔ ∃m. n = 2 * m
ODD_EXISTS
|- ∀n. ODD n ⇔ ∃m. n = SUC (2 * m)
EVEN_EXP
|- ∀m n. 0 < n ∧ EVEN m ⇒ EVEN (m ** n)
EQ_LESS_EQ
|- ∀m n. (m = n) ⇔ m ≤ n ∧ n ≤ m
ADD_MONO_LESS_EQ
|- ∀m n p. m + n ≤ m + p ⇔ n ≤ p
LE_ADD_LCANCEL
|- ∀m n p. m + n ≤ m + p ⇔ n ≤ p
LE_ADD_RCANCEL
|- ∀m n p. n + m ≤ p + m ⇔ n ≤ p
NOT_SUC_LESS_EQ_0
|- ∀n. ¬(SUC n ≤ 0)
NOT_LEQ
|- ∀m n. ¬(m ≤ n) ⇔ SUC n ≤ m
NOT_NUM_EQ
|- ∀m n. m ≠ n ⇔ SUC m ≤ n ∨ SUC n ≤ m
NOT_GREATER
|- ∀m n. ¬(m > n) ⇔ m ≤ n
NOT_GREATER_EQ
|- ∀m n. ¬(m ≥ n) ⇔ SUC m ≤ n
SUC_ONE_ADD
|- ∀n. SUC n = 1 + n
SUC_ADD_SYM
|- ∀m n. SUC (m + n) = SUC n + m
NOT_SUC_ADD_LESS_EQ
|- ∀m n. ¬(SUC (m + n) ≤ m)
MULT_LESS_EQ_SUC
|- ∀m n p. m ≤ n ⇔ SUC p * m ≤ SUC p * n
LE_MULT_LCANCEL
|- ∀m n p. m * n ≤ m * p ⇔ (m = 0) ∨ n ≤ p
LE_MULT_RCANCEL
|- ∀m n p. m * n ≤ p * n ⇔ (n = 0) ∨ m ≤ p
LT_MULT_LCANCEL
|- ∀m n p. m * n < m * p ⇔ 0 < m ∧ n < p
LT_MULT_RCANCEL
|- ∀m n p. m * n < p * n ⇔ 0 < n ∧ m < p
LT_MULT_CANCEL_LBARE
|- (m < m * n ⇔ 0 < m ∧ 1 < n) ∧ (m < n * m ⇔ 0 < m ∧ 1 < n)
LT_MULT_CANCEL_RBARE
|- (m * n < m ⇔ 0 < m ∧ (n = 0)) ∧ (m * n < n ⇔ 0 < n ∧ (m = 0))
LE_MULT_CANCEL_LBARE
|- (m ≤ m * n ⇔ (m = 0) ∨ 0 < n) ∧ (m ≤ n * m ⇔ (m = 0) ∨ 0 < n)
LE_MULT_CANCEL_RBARE
|- (m * n ≤ m ⇔ (m = 0) ∨ n ≤ 1) ∧ (m * n ≤ n ⇔ (n = 0) ∨ m ≤ 1)
SUB_LEFT_ADD
|- ∀m n p. m + (n − p) = if n ≤ p then m else m + n − p
SUB_RIGHT_ADD
|- ∀m n p. m − n + p = if m ≤ n then p else m + p − n
SUB_LEFT_SUB
|- ∀m n p. m − (n − p) = if n ≤ p then m else m + p − n
SUB_RIGHT_SUB
|- ∀m n p. m − n − p = m − (n + p)
SUB_LEFT_SUC
|- ∀m n. SUC (m − n) = if m ≤ n then SUC 0 else SUC m − n
SUB_LEFT_LESS_EQ
|- ∀m n p. m ≤ n − p ⇔ m + p ≤ n ∨ m ≤ 0
SUB_RIGHT_LESS_EQ
|- ∀m n p. m − n ≤ p ⇔ m ≤ n + p
SUB_LEFT_LESS
|- ∀m n p. m < n − p ⇔ m + p < n
SUB_RIGHT_LESS
|- ∀m n p. m − n < p ⇔ m < n + p ∧ 0 < p
SUB_LEFT_GREATER_EQ
|- ∀m n p. m ≥ n − p ⇔ m + p ≥ n
SUB_RIGHT_GREATER_EQ
|- ∀m n p. m − n ≥ p ⇔ m ≥ n + p ∨ 0 ≥ p
SUB_LEFT_GREATER
|- ∀m n p. m > n − p ⇔ m + p > n ∧ m > 0
SUB_RIGHT_GREATER
|- ∀m n p. m − n > p ⇔ m > n + p
SUB_LEFT_EQ
|- ∀m n p. (m = n − p) ⇔ (m + p = n) ∨ m ≤ 0 ∧ n ≤ p
SUB_RIGHT_EQ
|- ∀m n p. (m − n = p) ⇔ (m = n + p) ∨ m ≤ n ∧ p ≤ 0
LE
|- (∀n. n ≤ 0 ⇔ (n = 0)) ∧ ∀m n. m ≤ SUC n ⇔ (m = SUC n) ∨ m ≤ n
DA
|- ∀k n. 0 < n ⇒ ∃r q. (k = q * n + r) ∧ r < n
MOD_ONE
|- ∀k. k MOD SUC 0 = 0
MOD_1
|- ∀k. k MOD 1 = 0
DIV_LESS_EQ
|- ∀n. 0 < n ⇒ ∀k. k DIV n ≤ k
DIV_UNIQUE
|- ∀n k q. (∃r. (k = q * n + r) ∧ r < n) ⇒ (k DIV n = q)
MOD_UNIQUE
|- ∀n k r. (∃q. (k = q * n + r) ∧ r < n) ⇒ (k MOD n = r)
DIV_MULT
|- ∀n r. r < n ⇒ ∀q. (q * n + r) DIV n = q
LESS_MOD
|- ∀n k. k < n ⇒ (k MOD n = k)
MOD_EQ_0
|- ∀n. 0 < n ⇒ ∀k. (k * n) MOD n = 0
ZERO_MOD
|- ∀n. 0 < n ⇒ (0 MOD n = 0)
ZERO_DIV
|- ∀n. 0 < n ⇒ (0 DIV n = 0)
MOD_MULT
|- ∀n r. r < n ⇒ ∀q. (q * n + r) MOD n = r
MOD_TIMES
|- ∀n. 0 < n ⇒ ∀q r. (q * n + r) MOD n = r MOD n
MOD_TIMES_SUB
|- ∀n q r. 0 < n ∧ 0 < q ∧ r ≤ n ⇒ ((q * n − r) MOD n = (n − r) MOD n)
MOD_PLUS
|- ∀n. 0 < n ⇒ ∀j k. (j MOD n + k MOD n) MOD n = (j + k) MOD n
MOD_MOD
|- ∀n. 0 < n ⇒ ∀k. k MOD n MOD n = k MOD n
LESS_DIV_EQ_ZERO
|- ∀r n. r < n ⇒ (r DIV n = 0)
MULT_DIV
|- ∀n q. 0 < n ⇒ (q * n DIV n = q)
ADD_DIV_ADD_DIV
|- ∀n. 0 < n ⇒ ∀x r. (x * n + r) DIV n = x + r DIV n
ADD_DIV_RWT
|- ∀n.
     0 < n ⇒
     ∀m p. (m MOD n = 0) ∨ (p MOD n = 0) ⇒ ((m + p) DIV n = m DIV n + p DIV n)
MOD_MULT_MOD
|- ∀m n. 0 < n ∧ 0 < m ⇒ ∀x. x MOD (n * m) MOD n = x MOD n
DIV_ONE
|- ∀q. q DIV SUC 0 = q
DIV_1
|- ∀q. q DIV 1 = q
DIVMOD_ID
|- ∀n. 0 < n ⇒ (n DIV n = 1) ∧ (n MOD n = 0)
DIV_DIV_DIV_MULT
|- ∀m n. 0 < m ∧ 0 < n ⇒ ∀x. x DIV m DIV n = x DIV (m * n)
SUC_PRE
|- 0 < m ⇔ (SUC (PRE m) = m)
DIV_LESS
|- ∀n d. 0 < n ∧ 1 < d ⇒ n DIV d < n
MOD_LESS
|- ∀m n. 0 < n ⇒ m MOD n < n
ADD_MODULUS
|- (∀n x. 0 < n ⇒ ((x + n) MOD n = x MOD n)) ∧
   ∀n x. 0 < n ⇒ ((n + x) MOD n = x MOD n)
ADD_MODULUS_LEFT
|- ∀n x. 0 < n ⇒ ((x + n) MOD n = x MOD n)
ADD_MODULUS_RIGHT
|- ∀n x. 0 < n ⇒ ((n + x) MOD n = x MOD n)
DIV_P
|- ∀P p q. 0 < q ⇒ (P (p DIV q) ⇔ ∃k r. (p = k * q + r) ∧ r < q ∧ P k)
DIV_P_UNIV
|- ∀P m n. 0 < n ⇒ (P (m DIV n) ⇔ ∀q r. (m = q * n + r) ∧ r < n ⇒ P q)
MOD_P
|- ∀P p q. 0 < q ⇒ (P (p MOD q) ⇔ ∃k r. (p = k * q + r) ∧ r < q ∧ P r)
MOD_P_UNIV
|- ∀P m n. 0 < n ⇒ (P (m MOD n) ⇔ ∀q r. (m = q * n + r) ∧ r < n ⇒ P r)
MOD_TIMES2
|- ∀n. 0 < n ⇒ ∀j k. (j MOD n * k MOD n) MOD n = (j * k) MOD n
MOD_COMMON_FACTOR
|- ∀n p q. 0 < n ∧ 0 < q ⇒ (n * p MOD q = (n * p) MOD (n * q))
X_MOD_Y_EQ_X
|- ∀x y. 0 < y ⇒ ((x MOD y = x) ⇔ x < y)
DIV_LE_MONOTONE
|- ∀n x y. 0 < n ∧ x ≤ y ⇒ x DIV n ≤ y DIV n
LE_LT1
|- ∀x y. x ≤ y ⇔ x < y + 1
X_LE_DIV
|- ∀x y z. 0 < z ⇒ (x ≤ y DIV z ⇔ x * z ≤ y)
X_LT_DIV
|- ∀x y z. 0 < z ⇒ (x < y DIV z ⇔ (x + 1) * z ≤ y)
DIV_LT_X
|- ∀x y z. 0 < z ⇒ (y DIV z < x ⇔ y < x * z)
DIV_LE_X
|- ∀x y z. 0 < z ⇒ (y DIV z ≤ x ⇔ y < (x + 1) * z)
DIV_EQ_X
|- ∀x y z. 0 < z ⇒ ((y DIV z = x) ⇔ x * z ≤ y ∧ y < SUC x * z)
DIV_MOD_MOD_DIV
|- ∀m n k. 0 < n ∧ 0 < k ⇒ ((m DIV n) MOD k = m MOD (n * k) DIV n)
MULT_EQ_DIV
|- 0 < x ⇒ ((x * y = z) ⇔ (y = z DIV x) ∧ (z MOD x = 0))
NUMERAL_MULT_EQ_DIV
|- ((NUMERAL (BIT1 x) * y = NUMERAL z) ⇔
    (y = NUMERAL z DIV NUMERAL (BIT1 x)) ∧
    (NUMERAL z MOD NUMERAL (BIT1 x) = 0)) ∧
   ((NUMERAL (BIT2 x) * y = NUMERAL z) ⇔
    (y = NUMERAL z DIV NUMERAL (BIT2 x)) ∧
    (NUMERAL z MOD NUMERAL (BIT2 x) = 0))
MOD_EQ_0_DIVISOR
|- 0 < n ⇒ ((k MOD n = 0) ⇔ ∃d. k = d * n)
MOD_SUC
|- 0 < y ∧ SUC x ≠ SUC (x DIV y) * y ⇒ (SUC x MOD y = SUC (x MOD y))
MOD_SUC_IFF
|- 0 < y ⇒ ((SUC x MOD y = SUC (x MOD y)) ⇔ SUC x ≠ SUC (x DIV y) * y)
ONE_MOD
|- 1 < n ⇒ (1 MOD n = 1)
ONE_MOD_IFF
|- 1 < n ⇔ 0 < n ∧ (1 MOD n = 1)
MOD_LESS_EQ
|- 0 < y ⇒ x MOD y ≤ x
MOD_LIFT_PLUS
|- 0 < n ∧ k < n − x MOD n ⇒ ((x + k) MOD n = x MOD n + k)
MOD_LIFT_PLUS_IFF
|- 0 < n ⇒ (((x + k) MOD n = x MOD n + k) ⇔ k < n − x MOD n)
num_case_cong
|- ∀M M' v f.
     (M = M') ∧ ((M' = 0) ⇒ (v = v')) ∧ (∀n. (M' = SUC n) ⇒ (f n = f' n)) ⇒
     (num_CASE M v f = num_CASE M' v' f')
SUC_ELIM_THM
|- ∀P. (∀n. P (SUC n) n) ⇔ ∀n. 0 < n ⇒ P n (n − 1)
SUC_ELIM_NUMERALS
|- ∀f g.
     (∀n. g (SUC n) = f n (SUC n)) ⇔
     (∀n.
        g (NUMERAL (BIT1 n)) = f (NUMERAL (BIT1 n) − 1) (NUMERAL (BIT1 n))) ∧
     ∀n. g (NUMERAL (BIT2 n)) = f (NUMERAL (BIT1 n)) (NUMERAL (BIT2 n))
SUB_ELIM_THM
|- P (a − b) ⇔ ∀d. ((b = a + d) ⇒ P 0) ∧ ((a = b + d) ⇒ P d)
PRE_ELIM_THM
|- P (PRE n) ⇔ ∀m. ((n = 0) ⇒ P 0) ∧ ((n = SUC m) ⇒ P m)
MULT_INCREASES
|- ∀m n. 1 < m ∧ 0 < n ⇒ SUC n ≤ m * n
EXP_ALWAYS_BIG_ENOUGH
|- ∀b. 1 < b ⇒ ∀n. ∃m. n ≤ b ** m
EXP_EQ_0
|- ∀n m. (n ** m = 0) ⇔ (n = 0) ∧ 0 < m
ZERO_LT_EXP
|- 0 < x ** y ⇔ 0 < x ∨ (y = 0)
EXP_1
|- ∀n. (1 ** n = 1) ∧ (n ** 1 = n)
EXP_EQ_1
|- ∀n m. (n ** m = 1) ⇔ (n = 1) ∨ (m = 0)
EXP_BASE_LE_MONO
|- ∀b. 1 < b ⇒ ∀n m. b ** m ≤ b ** n ⇔ m ≤ n
EXP_BASE_LT_MONO
|- ∀b. 1 < b ⇒ ∀n m. b ** m < b ** n ⇔ m < n
EXP_BASE_INJECTIVE
|- ∀b. 1 < b ⇒ ∀n m. (b ** n = b ** m) ⇔ (n = m)
EXP_BASE_LEQ_MONO_IMP
|- ∀n m b. 0 < b ∧ m ≤ n ⇒ b ** m ≤ b ** n
EXP_BASE_LEQ_MONO_SUC_IMP
|- m ≤ n ⇒ SUC b ** m ≤ SUC b ** n
EXP_BASE_LE_IFF
|- b ** m ≤ b ** n ⇔
   (b = 0) ∧ (n = 0) ∨ (b = 0) ∧ 0 < m ∨ (b = 1) ∨ 1 < b ∧ m ≤ n
X_LE_X_EXP
|- 0 < n ⇒ x ≤ x ** n
X_LT_EXP_X
|- 1 < b ⇒ x < b ** x
ZERO_EXP
|- 0 ** x = if x = 0 then 1 else 0
X_LT_EXP_X_IFF
|- x < b ** x ⇔ 1 < b ∨ (x = 0)
EXP_EXP_LT_MONO
|- ∀a b. a ** n < b ** n ⇔ a < b ∧ 0 < n
EXP_EXP_LE_MONO
|- ∀a b. a ** n ≤ b ** n ⇔ a ≤ b ∨ (n = 0)
EXP_EXP_INJECTIVE
|- ∀b1 b2 x. (b1 ** x = b2 ** x) ⇔ (x = 0) ∨ (b1 = b2)
EXP_SUB
|- ∀p q n. 0 < n ∧ q ≤ p ⇒ (n ** (p − q) = n ** p DIV n ** q)
EXP_SUB_NUMERAL
|- 0 < n ⇒
   (n ** NUMERAL (BIT1 x) DIV n = n ** (NUMERAL (BIT1 x) − 1)) ∧
   (n ** NUMERAL (BIT2 x) DIV n = n ** NUMERAL (BIT1 x))
EXP_BASE_MULT
|- ∀z x y. (x * y) ** z = x ** z * y ** z
EXP_EXP_MULT
|- ∀z x y. x ** (y * z) = (x ** y) ** z
MAX_COMM
|- ∀m n. MAX m n = MAX n m
MIN_COMM
|- ∀m n. MIN m n = MIN n m
MAX_ASSOC
|- ∀m n p. MAX m (MAX n p) = MAX (MAX m n) p
MIN_ASSOC
|- ∀m n p. MIN m (MIN n p) = MIN (MIN m n) p
MIN_MAX_EQ
|- ∀m n. (MIN m n = MAX m n) ⇔ (m = n)
MIN_MAX_LT
|- ∀m n. MIN m n < MAX m n ⇔ m ≠ n
MIN_MAX_LE
|- ∀m n. MIN m n ≤ MAX m n
MIN_MAX_PRED
|- ∀P m n. P m ∧ P n ⇒ P (MIN m n) ∧ P (MAX m n)
MIN_LT
|- ∀n m p. (MIN m n < p ⇔ m < p ∨ n < p) ∧ (p < MIN m n ⇔ p < m ∧ p < n)
MAX_LT
|- ∀n m p. (p < MAX m n ⇔ p < m ∨ p < n) ∧ (MAX m n < p ⇔ m < p ∧ n < p)
MIN_LE
|- ∀n m p. (MIN m n ≤ p ⇔ m ≤ p ∨ n ≤ p) ∧ (p ≤ MIN m n ⇔ p ≤ m ∧ p ≤ n)
MAX_LE
|- ∀n m p. (p ≤ MAX m n ⇔ p ≤ m ∨ p ≤ n) ∧ (MAX m n ≤ p ⇔ m ≤ p ∧ n ≤ p)
MIN_0
|- ∀n. (MIN n 0 = 0) ∧ (MIN 0 n = 0)
MAX_0
|- ∀n. (MAX n 0 = n) ∧ (MAX 0 n = n)
MIN_IDEM
|- ∀n. MIN n n = n
MAX_IDEM
|- ∀n. MAX n n = n
EXISTS_GREATEST
|- ∀P. (∃x. P x) ∧ (∃x. ∀y. y > x ⇒ ¬P y) ⇔ ∃x. P x ∧ ∀y. y > x ⇒ ¬P y
EXISTS_NUM
|- ∀P. (∃n. P n) ⇔ P 0 ∨ ∃m. P (SUC m)
FORALL_NUM
|- ∀P. (∀n. P n) ⇔ P 0 ∧ ∀n. P (SUC n)
BOUNDED_FORALL_THM
|- ∀c. 0 < c ⇒ ((∀n. n < c ⇒ P n) ⇔ P (c − 1) ∧ ∀n. n < c − 1 ⇒ P n)
BOUNDED_EXISTS_THM
|- ∀c. 0 < c ⇒ ((∃n. n < c ∧ P n) ⇔ P (c − 1) ∨ ∃n. n < c − 1 ∧ P n)
transitive_monotone
|- ∀R f.
     transitive R ∧ (∀n. R (f n) (f (SUC n))) ⇒ ∀m n. m < n ⇒ R (f m) (f n)
STRICTLY_INCREASING_TC
|- ∀f. (∀n. f n < f (SUC n)) ⇒ ∀m n. m < n ⇒ f m < f n
STRICTLY_INCREASING_ONE_ONE
|- ∀f. (∀n. f n < f (SUC n)) ⇒ ONE_ONE f
ONE_ONE_UNBOUNDED
|- ∀f. ONE_ONE f ⇒ ∀b. ∃n. b < f n
STRICTLY_INCREASING_UNBOUNDED
|- ∀f. (∀n. f n < f (SUC n)) ⇒ ∀b. ∃n. b < f n
NOT_STRICTLY_DECREASING
|- ∀f. ¬∀n. f (SUC n) < f n
ABS_DIFF_SYM
|- ∀n m. ABS_DIFF n m = ABS_DIFF m n
ABS_DIFF_COMM
|- ∀n m. ABS_DIFF n m = ABS_DIFF m n
ABS_DIFF_EQS
|- ∀n. ABS_DIFF n n = 0
ABS_DIFF_EQ_0
|- ∀n m. (ABS_DIFF n m = 0) ⇔ (n = m)
ABS_DIFF_ZERO
|- ∀n. (ABS_DIFF n 0 = n) ∧ (ABS_DIFF 0 n = n)
ABS_DIFF_TRIANGLE
|- ∀x y z. ABS_DIFF x z ≤ ABS_DIFF x y + ABS_DIFF y z
ABS_DIFF_ADD_SAME
|- ∀n m p. ABS_DIFF (n + p) (m + p) = ABS_DIFF n m
LT_SUB_RCANCEL
|- ∀m n p. n − m < p − m ⇔ n < p ∧ m < p
LE_SUB_RCANCEL
|- ∀m n p. n − m ≤ p − m ⇔ n ≤ m ∨ n ≤ p
ABS_DIFF_SUMS
|- ∀n1 n2 m1 m2.
     ABS_DIFF (n1 + n2) (m1 + m2) ≤ ABS_DIFF n1 m1 + ABS_DIFF n2 m2
FUNPOW_SUC
|- ∀f n x. FUNPOW f (SUC n) x = f (FUNPOW f n x)
FUNPOW_0
|- FUNPOW f 0 x = x
FUNPOW_ADD
|- ∀m n. FUNPOW f (m + n) x = FUNPOW f m (FUNPOW f n x)
FUNPOW_1
|- FUNPOW f 1 x = f x
NRC_0
|- ∀R x y. NRC R 0 x y ⇔ (x = y)
NRC_1
|- NRC R 1 x y ⇔ R x y
NRC_ADD_I
|- ∀m n x y z. NRC R m x y ∧ NRC R n y z ⇒ NRC R (m + n) x z
NRC_ADD_E
|- ∀m n x z. NRC R (m + n) x z ⇒ ∃y. NRC R m x y ∧ NRC R n y z
NRC_ADD_EQN
|- NRC R (m + n) x z ⇔ ∃y. NRC R m x y ∧ NRC R n y z
NRC_SUC_RECURSE_LEFT
|- NRC R (SUC n) x y ⇔ ∃z. NRC R n x z ∧ R z y
NRC_RTC
|- ∀n x y. NRC R n x y ⇒ R^* x y
RTC_NRC
|- ∀x y. R^* x y ⇒ ∃n. NRC R n x y
RTC_eq_NRC
|- ∀R x y. R^* x y ⇔ ∃n. NRC R n x y
TC_eq_NRC
|- ∀R x y. R⁺ x y ⇔ ∃n. NRC R (SUC n) x y
LESS_EQUAL_DIFF
|- ∀m n. m ≤ n ⇒ ∃k. m = n − k
MOD_2
|- ∀n. n MOD 2 = if EVEN n then 0 else 1
EVEN_MOD2
|- ∀x. EVEN x ⇔ (x MOD 2 = 0)
SUC_MOD
|- ∀n a b. 0 < n ⇒ ((SUC a MOD n = SUC b MOD n) ⇔ (a MOD n = b MOD n))
ADD_MOD
|- ∀n a b p. 0 < n ⇒ (((a + p) MOD n = (b + p) MOD n) ⇔ (a MOD n = b MOD n))
MOD_ELIM
|- ∀P x n. 0 < n ∧ P x ∧ (∀y. P (y + n) ⇒ P y) ⇒ P (x MOD n)
DOUBLE_LT
|- ∀p q. 2 * p + 1 < 2 * q ⇔ 2 * p < 2 * q
EXP2_LT
|- ∀m n. n DIV 2 < 2 ** m ⇔ n < 2 ** SUC m
SUB_LESS
|- ∀m n. 0 < n ∧ n ≤ m ⇒ m − n < m
SUB_MOD
|- ∀m n. 0 < n ∧ n ≤ m ⇒ ((m − n) MOD n = m MOD n)
ONE_LT_MULT_IMP
|- ∀p q. 1 < p ∧ 0 < q ⇒ 1 < p * q
ONE_LT_MULT
|- ∀x y. 1 < x * y ⇔ 0 < x ∧ 1 < y ∨ 0 < y ∧ 1 < x
ONE_LT_EXP
|- ∀x y. 1 < x ** y ⇔ 1 < x ∧ 0 < y
findq_thm
|- findq (a,m,n) =
   if n = 0 then a
   else (let d = 2 * n in if m < d then a else findq (2 * a,m,d))
findq_eq_0
|- ∀a m n. (findq (a,m,n) = 0) ⇔ (a = 0)
findq_divisor
|- n ≤ m ⇒ findq (a,m,n) * n ≤ a * m
DIVMOD_THM
|- DIVMOD (a,m,n) =
   if n = 0 then (0,0)
   else if m < n then (a,m)
   else (let q = findq (1,m,n) in DIVMOD (a + q,m − n * q,n))
MOD_SUB
|- 0 < n ∧ n * q ≤ m ⇒ ((m − n * q) MOD n = m MOD n)
DIV_SUB
|- 0 < n ∧ n * q ≤ m ⇒ ((m − n * q) DIV n = m DIV n − q)
DIVMOD_CORRECT
|- ∀m n a. 0 < n ⇒ (DIVMOD (a,m,n) = (a + m DIV n,m MOD n))
DIVMOD_CALC
|- (∀m n. 0 < n ⇒ (m DIV n = FST (DIVMOD (0,m,n)))) ∧
   ∀m n. 0 < n ⇒ (m MOD n = SND (DIVMOD (0,m,n)))
MODEQ_0_CONG
|- MODEQ 0 m1 m2 ⇔ (m1 = m2)
MODEQ_NONZERO_MODEQUALITY
|- 0 < n ⇒ (MODEQ n m1 m2 ⇔ (m1 MOD n = m2 MOD n))
MODEQ_THM
|- MODEQ n m1 m2 ⇔ (n = 0) ∧ (m1 = m2) ∨ 0 < n ∧ (m1 MOD n = m2 MOD n)
MODEQ_INTRO_CONG
|- 0 < n ⇒ MODEQ n e0 e1 ⇒ (e0 MOD n = e1 MOD n)
MODEQ_PLUS_CONG
|- MODEQ n x0 x1 ⇒ MODEQ n y0 y1 ⇒ MODEQ n (x0 + y0) (x1 + y1)
MODEQ_MULT_CONG
|- MODEQ n x0 x1 ⇒ MODEQ n y0 y1 ⇒ MODEQ n (x0 * y0) (x1 * y1)
MODEQ_REFL
|- ∀x. MODEQ n x x
MODEQ_SYM
|- MODEQ n x y ⇔ MODEQ n y x
MODEQ_TRANS
|- ∀x y z. MODEQ n x y ∧ MODEQ n y z ⇒ MODEQ n x z
MODEQ_NUMERAL
|- (NUMERAL n ≤ NUMERAL m ⇒
    MODEQ (NUMERAL (BIT1 n)) (NUMERAL (BIT1 m))
      (NUMERAL (BIT1 m) MOD NUMERAL (BIT1 n))) ∧
   (NUMERAL n ≤ NUMERAL m ⇒
    MODEQ (NUMERAL (BIT1 n)) (NUMERAL (BIT2 m))
      (NUMERAL (BIT2 m) MOD NUMERAL (BIT1 n))) ∧
   (NUMERAL n ≤ NUMERAL m ⇒
    MODEQ (NUMERAL (BIT2 n)) (NUMERAL (BIT2 m))
      (NUMERAL (BIT2 m) MOD NUMERAL (BIT2 n))) ∧
   (NUMERAL n < NUMERAL m ⇒
    MODEQ (NUMERAL (BIT2 n)) (NUMERAL (BIT1 m))
      (NUMERAL (BIT1 m) MOD NUMERAL (BIT2 n)))
MODEQ_MOD
|- 0 < n ⇒ MODEQ n (x MOD n) x
MODEQ_0
|- 0 < n ⇒ MODEQ n n 0
datatype_num
|- DATATYPE (num 0 SUC)