Theory "complex"

Parents     transc

Signature

Constant Type
IM :complex -> real
RE :complex -> real
arg :complex -> real
complex_add :complex -> complex -> complex
complex_div :complex -> complex -> complex
complex_exp :complex -> complex
complex_inv :complex -> complex
complex_mul :complex -> complex -> complex
complex_neg :complex -> complex
complex_of_num :num -> complex
complex_of_real :real -> complex
complex_pow :complex -> num -> complex
complex_scalar_lmul :real -> complex -> complex
complex_scalar_rmul :complex -> real -> complex
complex_sub :complex -> complex -> complex
conj :complex -> complex
i :complex
modu :complex -> real

Definitions

RE
|- ∀z. RE z = FST z
IM
|- ∀z. IM z = SND z
complex_of_real
|- ∀x. complex_of_real x = (x,0)
complex_of_num
|- ∀n. &n = complex_of_real (&n)
i
|- i = (0,1)
complex_add
|- ∀z w. z + w = (RE z + RE w,IM z + IM w)
complex_neg
|- ∀z. -z = (-RE z,-IM z)
complex_mul
|- ∀z w. z * w = (RE z * RE w − IM z * IM w,RE z * IM w + IM z * RE w)
complex_inv
|- ∀z.
     inv z =
     (RE z / (RE z pow 2 + IM z pow 2),-IM z / (RE z pow 2 + IM z pow 2))
complex_sub
|- ∀z w. z − w = z + -w
complex_div
|- ∀z w. z / w = z * inv w
complex_scalar_lmul
|- ∀k z. k * z = (k * RE z,k * IM z)
complex_scalar_rmul
|- ∀z k. z * k = (RE z * k,IM z * k)
conj
|- ∀z. conj z = (RE z,-IM z)
modu
|- ∀z. modu z = sqrt (RE z pow 2 + IM z pow 2)
arg
|- ∀z.
     arg z =
     if 0 ≤ IM z then acs (RE z / modu z) else -acs (RE z / modu z) + 2 * pi
complex_pow_def
|- (∀z. z pow 0 = 1) ∧ ∀z n. z pow SUC n = z * z pow n
complex_exp
|- ∀z. exp z = exp (RE z) * (cos (IM z),sin (IM z))


Theorems

COMPLEX_LEMMA1
|- ∀a b c d.
     (a * c − b * d) pow 2 + (a * d + b * c) pow 2 =
     (a pow 2 + b pow 2) * (c pow 2 + d pow 2)
COMPLEX_LEMMA2
|- ∀x y. abs x ≤ sqrt (x pow 2 + y pow 2)
COMPLEX
|- ∀z. (RE z,IM z) = z
COMPLEX_RE_IM_EQ
|- ∀z w. (z = w) ⇔ (RE z = RE w) ∧ (IM z = IM w)
RE_COMPLEX_OF_REAL
|- ∀x. RE (complex_of_real x) = x
IM_COMPLEX_OF_REAL
|- ∀x. IM (complex_of_real x) = 0
COMPLEX_0
|- 0 = complex_of_real 0
COMPLEX_1
|- 1 = complex_of_real 1
COMPLEX_10
|- 1 ≠ 0
COMPLEX_0_THM
|- ∀z. (z = 0) ⇔ (RE z pow 2 + IM z pow 2 = 0)
COMPLEX_ADD_COMM
|- ∀z w. z + w = w + z
COMPLEX_ADD_ASSOC
|- ∀z w v. z + (w + v) = z + w + v
COMPLEX_ADD_RID
|- ∀z. z + 0 = z
COMPLEX_ADD_LID
|- ∀z. 0 + z = z
COMPLEX_ADD_RINV
|- ∀z. z + -z = 0
COMPLEX_ADD_LINV
|- ∀z. -z + z = 0
COMPLEX_MUL_COMM
|- ∀z w. z * w = w * z
COMPLEX_MUL_ASSOC
|- ∀z w v. z * (w * v) = z * w * v
COMPLEX_MUL_RID
|- ∀z. z * 1 = z
COMPLEX_MUL_LID
|- ∀z. 1 * z = z
COMPLEX_MUL_RINV
|- ∀z. z ≠ 0 ⇒ (z * inv z = 1)
COMPLEX_MUL_LINV
|- ∀z. z ≠ 0 ⇒ (inv z * z = 1)
COMPLEX_ADD_LDISTRIB
|- ∀z w v. z * (w + v) = z * w + z * v
COMPLEX_ADD_RDISTRIB
|- ∀z w v. (z + w) * v = z * v + w * v
COMPLEX_EQ_LADD
|- ∀z w v. (z + w = z + v) ⇔ (w = v)
COMPLEX_EQ_RADD
|- ∀z w v. (z + v = w + v) ⇔ (z = w)
COMPLEX_ADD_RID_UNIQ
|- ∀z w. (z + w = z) ⇔ (w = 0)
COMPLEX_ADD_LID_UNIQ
|- ∀z w. (z + w = w) ⇔ (z = 0)
COMPLEX_NEGNEG
|- ∀z. - -z = z
COMPLEX_NEG_EQ
|- ∀z w. (-z = w) ⇔ (z = -w)
COMPLEX_EQ_NEG
|- ∀z w. (-z = -w) ⇔ (z = w)
COMPLEX_RNEG_UNIQ
|- ∀z w. (z + w = 0) ⇔ (w = -z)
COMPLEX_LNEG_UNIQ
|- ∀z w. (z + w = 0) ⇔ (z = -w)
COMPLEX_NEG_ADD
|- ∀z w. -(z + w) = -z + -w
COMPLEX_MUL_RZERO
|- ∀z. z * 0 = 0
COMPLEX_MUL_LZERO
|- ∀z. 0 * z = 0
COMPLEX_NEG_LMUL
|- ∀z w. -(z * w) = -z * w
COMPLEX_NEG_RMUL
|- ∀z w. -(z * w) = z * -w
COMPLEX_NEG_MUL2
|- ∀z w. -z * -w = z * w
COMPLEX_ENTIRE
|- ∀z w. (z * w = 0) ⇔ (z = 0) ∨ (w = 0)
COMPLEX_NEG_0
|- -0 = 0
COMPLEX_NEG_EQ0
|- ∀z. (-z = 0) ⇔ (z = 0)
COMPLEX_SUB_REFL
|- ∀z. z − z = 0
COMPLEX_SUB_RZERO
|- ∀z. z − 0 = z
COMPLEX_SUB_LZERO
|- ∀z. 0 − z = -z
COMPLEX_SUB_LNEG
|- ∀z w. -z − w = -(z + w)
COMPLEX_SUB_NEG2
|- ∀z w. -z − -w = w − z
COMPLEX_NEG_SUB
|- ∀z w. -(z − w) = w − z
COMPLEX_SUB_RNEG
|- ∀z w. z − -w = z + w
COMPLEX_SUB_ADD
|- ∀z w. z − w + w = z
COMPLEX_SUB_ADD2
|- ∀z w. w + (z − w) = z
COMPLEX_ADD_SUB
|- ∀z w. z + w − z = w
COMPLEX_SUB_SUB
|- ∀z w. z − w − z = -w
COMPLEX_SUB_SUB2
|- ∀z w. z − (z − w) = w
COMPLEX_ADD_SUB2
|- ∀z w. z − (z + w) = -w
COMPLEX_ADD2_SUB2
|- ∀z w u v. z + w − (u + v) = z − u + (w − v)
COMPLEX_SUB_TRIANGLE
|- ∀z w v. z − w + (w − v) = z − v
COMPLEX_SUB_0
|- ∀z w. (z − w = 0) ⇔ (z = w)
COMPLEX_EQ_SUB_LADD
|- ∀z w v. (z = w − v) ⇔ (z + v = w)
COMPLEX_EQ_SUB_RADD
|- ∀z w v. (z − w = v) ⇔ (z = v + w)
COMPLEX_MUL_RNEG
|- ∀z w. z * -w = -(z * w)
COMPLEX_MUL_LNEG
|- ∀z w. -z * w = -(z * w)
COMPLEX_SUB_LDISTRIB
|- ∀z w v. z * (w − v) = z * w − z * v
COMPLEX_SUB_RDISTRIB
|- ∀z w v. (z − w) * v = z * v − w * v
COMPLEX_DIFFSQ
|- ∀z w. (z + w) * (z − w) = z * z − w * w
COMPLEX_EQ_LMUL
|- ∀z w v. (z * w = z * v) ⇔ (z = 0) ∨ (w = v)
COMPLEX_EQ_RMUL
|- ∀z w v. (z * v = w * v) ⇔ (v = 0) ∨ (z = w)
COMPLEX_EQ_LMUL2
|- ∀z w v. z ≠ 0 ⇒ ((w = v) ⇔ (z * w = z * v))
COMPLEX_EQ_RMUL_IMP
|- ∀z w v. z ≠ 0 ∧ (w * z = v * z) ⇒ (w = v)
COMPLEX_EQ_LMUL_IMP
|- ∀z w v. z ≠ 0 ∧ (z * w = z * v) ⇒ (w = v)
COMPLEX_NEG_INV
|- ∀z. z ≠ 0 ⇒ (inv (-z) = -inv z)
COMPLEX_INV_MUL
|- ∀z w. z ≠ 0 ∧ w ≠ 0 ⇒ (inv (z * w) = inv z * inv w)
COMPLEX_INVINV
|- ∀z. z ≠ 0 ⇒ (inv (inv z) = z)
COMPLEX_LINV_UNIQ
|- ∀z w. (z * w = 1) ⇒ (z = inv w)
COMPLEX_RINV_UNIQ
|- ∀z w. (z * w = 1) ⇒ (w = inv z)
COMPLEX_INV_0
|- inv 0 = 0
COMPLEX_INV1
|- inv 1 = 1
COMPLEX_INV_INV
|- ∀z. inv (inv z) = z
COMPLEX_INV_NEG
|- ∀z. inv (-z) = -inv z
COMPLEX_INV_EQ_0
|- ∀z. (inv z = 0) ⇔ (z = 0)
COMPLEX_INV_NZ
|- ∀z. z ≠ 0 ⇒ inv z ≠ 0
COMPLEX_INV_INJ
|- ∀z w. (inv z = inv w) ⇔ (z = w)
COMPLEX_NEG_LDIV
|- ∀z w. -(z / w) = -z / w
COMPLEX_NEG_RDIV
|- ∀z w. -(z / w) = z / -w
COMPLEX_NEG_DIV2
|- ∀z w. -z / -w = z / w
COMPLEX_INV_1OVER
|- ∀z. inv z = 1 / z
COMPLEX_DIV1
|- ∀z. z / 1 = z
COMPLEX_DIV_ADD
|- ∀z w v. z / v + w / v = (z + w) / v
COMPLEX_DIV_SUB
|- ∀z w v. z / v − w / v = (z − w) / v
COMPLEX_DIV_RMUL_CANCEL
|- ∀v z w. v ≠ 0 ⇒ (z * v / (w * v) = z / w)
COMPLEX_DIV_LMUL_CANCEL
|- ∀v z w. v ≠ 0 ⇒ (v * z / (v * w) = z / w)
COMPLEX_DIV_DENOM_CANCEL
|- ∀z w v. z ≠ 0 ⇒ (w / z / (v / z) = w / v)
COMPLEX_DIV_INNER_CANCEL
|- ∀z w v. z ≠ 0 ⇒ (w / z * (z / v) = w / v)
COMPLEX_DIV_OUTER_CANCEL
|- ∀z w v. z ≠ 0 ⇒ (z / w * (v / z) = v / w)
COMPLEX_DIV_MUL2
|- ∀z w. z ≠ 0 ∧ w ≠ 0 ⇒ ∀v. v / w = z * v / (z * w)
COMPLEX_ADD_RAT
|- ∀z w u v. w ≠ 0 ∧ v ≠ 0 ⇒ (z / w + u / v = (z * v + w * u) / (w * v))
COMPLEX_SUB_RAT
|- ∀z w u v. w ≠ 0 ∧ v ≠ 0 ⇒ (z / w − u / v = (z * v − w * u) / (w * v))
COMPLEX_DIV_LZERO
|- ∀z. 0 / z = 0
COMPLEX_DIV_REFL
|- ∀z. z ≠ 0 ⇒ (z / z = 1)
COMPLEX_SUB_INV2
|- ∀z w. z ≠ 0 ∧ w ≠ 0 ⇒ (inv z − inv w = (w − z) / (z * w))
COMPLEX_EQ_RDIV_EQ
|- ∀z w v. v ≠ 0 ⇒ ((z = w / v) ⇔ (z * v = w))
COMPLEX_EQ_LDIV_EQ
|- ∀z w v. v ≠ 0 ⇒ ((z / v = w) ⇔ (z = w * v))
COMPLEX_OF_REAL_EQ
|- ∀x y. (complex_of_real x = complex_of_real y) ⇔ (x = y)
COMPLEX_OF_REAL_ADD
|- ∀x y. complex_of_real x + complex_of_real y = complex_of_real (x + y)
COMPLEX_OF_REAL_NEG
|- ∀x. -complex_of_real x = complex_of_real (-x)
COMPLEX_OF_REAL_MUL
|- ∀x y. complex_of_real x * complex_of_real y = complex_of_real (x * y)
COMPLEX_OF_REAL_INV
|- ∀x. inv (complex_of_real x) = complex_of_real (inv x)
COMPLEX_OF_REAL_SUB
|- ∀x y. complex_of_real x − complex_of_real y = complex_of_real (x − y)
COMPLEX_OF_REAL_DIV
|- ∀x y. complex_of_real x / complex_of_real y = complex_of_real (x / y)
COMPLEX_OF_NUM_EQ
|- ∀m n. (&m = &n) ⇔ (m = n)
COMPLEX_OF_NUM_ADD
|- ∀m n. &m + &n = &(m + n)
COMPLEX_OF_NUM_MUL
|- ∀m n. &m * &n = &(m * n)
COMPLEX_SCALAR_LMUL
|- ∀k l z. k * (l * z) = k * l * z
COMPLEX_SCALAR_LMUL_NEG
|- ∀k z. -(k * z) = -k * z
COMPLEX_NEG_SCALAR_LMUL
|- ∀k z. k * -z = -k * z
COMPLEX_SCALAR_LMUL_ADD
|- ∀k l z. (k + l) * z = k * z + l * z
COMPLEX_SCALAR_LMUL_SUB
|- ∀k l z. (k − l) * z = k * z − l * z
COMPLEX_ADD_SCALAR_LMUL
|- ∀k z w. k * (z + w) = k * z + k * w
COMPLEX_SUB_SCALAR_LMUL
|- ∀k z w. k * (z − w) = k * z − k * w
COMPLEX_MUL_SCALAR_LMUL2
|- ∀k l z w. k * z * (l * w) = k * l * (z * w)
COMPLEX_LMUL_SCALAR_LMUL
|- ∀k z w. k * z * w = k * (z * w)
COMPLEX_RMUL_SCALAR_LMUL
|- ∀k z w. z * (k * w) = k * (z * w)
COMPLEX_SCALAR_LMUL_ZERO
|- ∀z. 0 * z = 0
COMPLEX_ZERO_SCALAR_LMUL
|- ∀k. k * 0 = 0
COMPLEX_SCALAR_LMUL_ONE
|- ∀z. 1 * z = z
COMPLEX_SCALAR_LMUL_NEG1
|- ∀z. -1 * z = -z
COMPLEX_DOUBLE
|- ∀z. z + z = 2 * z
COMPLEX_SCALAR_LMUL_ENTIRE
|- ∀k z. (k * z = 0) ⇔ (k = 0) ∨ (z = 0)
COMPLEX_EQ_SCALAR_LMUL
|- ∀k z w. (k * z = k * w) ⇔ (k = 0) ∨ (z = w)
COMPLEX_SCALAR_LMUL_EQ
|- ∀k l z. (k * z = l * z) ⇔ (k = l) ∨ (z = 0)
COMPLEX_SCALAR_LMUL_EQ1
|- ∀k z. (k * z = z) ⇔ (k = 1) ∨ (z = 0)
COMPLEX_INV_SCALAR_LMUL
|- ∀k z. k ≠ 0 ∧ z ≠ 0 ⇒ (inv (k * z) = inv k * inv z)
COMPLEX_SCALAR_LMUL_DIV2
|- ∀k l z w. l ≠ 0 ∧ w ≠ 0 ⇒ (k * z / (l * w) = k / l * (z / w))
COMPLEX_SCALAR_MUL_COMM
|- ∀k z. k * z = z * k
COMPLEX_SCALAR_RMUL
|- ∀k l z. z * k * l = z * (k * l)
COMPLEX_SCALAR_RMUL_NEG
|- ∀k z. -(z * k) = z * -k
COMPLEX_NEG_SCALAR_RMUL
|- ∀k z. -z * k = z * -k
COMPLEX_SCALAR_RMUL_ADD
|- ∀k l z. z * (k + l) = z * k + z * l
COMPLEX_RSCALAR_RMUL_SUB
|- ∀k l z. z * (k − l) = z * k − z * l
COMPLEX_ADD_RSCALAR_RMUL
|- ∀k z w. (z + w) * k = z * k + w * k
COMPLEX_SUB_SCALAR_RMUL
|- ∀k z w. (z − w) * k = z * k − w * k
COMPLEX_SCALAR_RMUL_ZERO
|- ∀z. z * 0 = 0
COMPLEX_ZERO_SCALAR_RMUL
|- ∀k. 0 * k = 0
COMPLEX_SCALAR_RMUL_ONE
|- ∀z. z * 1 = z
COMPLEX_SCALAR_RMUL_NEG1
|- ∀z. z * -1 = -z
CONJ_REAL_REFL
|- ∀x. conj (complex_of_real x) = complex_of_real x
CONJ_NUM_REFL
|- ∀n. conj (&n) = &n
CONJ_ADD
|- ∀z w. conj (z + w) = conj z + conj w
CONJ_NEG
|- ∀z. conj (-z) = -conj z
CONJ_SUB
|- ∀z w. conj (z − w) = conj z − conj w
CONJ_MUL
|- ∀z w. conj (z * w) = conj z * conj w
CONJ_INV
|- ∀z. conj (inv z) = inv (conj z)
CONJ_DIV
|- ∀z w. conj (z / w) = conj z / conj w
CONJ_SCALAR_LMUL
|- ∀k z. conj (k * z) = k * conj z
CONJ_CONJ
|- ∀z. conj (conj z) = z
CONJ_EQ
|- ∀z w. (conj z = w) ⇔ (z = conj w)
CONJ_EQ2
|- ∀z w. (conj z = conj w) ⇔ (z = w)
COMPLEX_MUL_RCONJ
|- ∀z. conj z * z = complex_of_real (RE z pow 2 + IM z pow 2)
CONJ_ZERO
|- conj 0 = 0
MODU_POW2
|- ∀z. modu z pow 2 = RE z pow 2 + IM z pow 2
RE_IM_LE_MODU
|- ∀z. abs (RE z) ≤ modu z ∧ abs (IM z) ≤ modu z
MODU_POS
|- ∀z. 0 ≤ modu z
COMPLEX_MUL_RCONJ1
|- ∀z. z * conj z = complex_of_real (modu z pow 2)
COMPLEX_MUL_LCONJ1
|- ∀z. conj z * z = complex_of_real (modu z pow 2)
MODU_NEG
|- ∀z. modu (-z) = modu z
MODU_SUB
|- ∀z w. modu (z − w) = modu (w − z)
MODU_CONJ
|- ∀z. modu (conj z) = modu z
MODU_MUL
|- ∀z w. modu (z * w) = modu z * modu w
MODU_0
|- modu 0 = 0
MODU_1
|- modu 1 = 1
MODU_COMPLEX_INV
|- ∀z. z ≠ 0 ⇒ (modu (inv z) = inv (modu z))
MODU_DIV
|- ∀z w. w ≠ 0 ⇒ (modu (z / w) = modu z / modu w)
MODU_SCALAR_LMUL
|- ∀k z. modu (k * z) = abs k * modu z
MODU_REAL
|- ∀x. modu (complex_of_real x) = abs x
MODU_NUM
|- ∀n. modu (&n) = &n
MODU_ZERO
|- ∀z. (z = 0) ⇔ (modu z = 0)
MODU_NZ
|- ∀z. z ≠ 0 ⇔ 0 < modu z
MODU_CASES
|- ∀z. (z = 0) ∨ 0 < modu z
RE_DIV_MODU_BOUNDS
|- ∀z. z ≠ 0 ⇒ -1 ≤ RE z / modu z ∧ RE z / modu z ≤ 1
IM_DIV_MODU_BOUNDS
|- ∀z. z ≠ 0 ⇒ -1 ≤ IM z / modu z ∧ IM z / modu z ≤ 1
RE_DIV_MODU_ACS_BOUNDS
|- ∀z. z ≠ 0 ⇒ 0 ≤ acs (RE z / modu z) ∧ acs (RE z / modu z) ≤ pi
IM_DIV_MODU_ASN_BOUNDS
|- ∀z. z ≠ 0 ⇒ -(pi / 2) ≤ asn (IM z / modu z) ∧ asn (IM z / modu z) ≤ pi / 2
RE_DIV_MODU_ACS_COS
|- ∀z. z ≠ 0 ⇒ (cos (acs (RE z / modu z)) = RE z / modu z)
IM_DIV_MODU_ASN_SIN
|- ∀z. z ≠ 0 ⇒ (sin (asn (IM z / modu z)) = IM z / modu z)
ARG_COS
|- ∀z. z ≠ 0 ⇒ (cos (arg z) = RE z / modu z)
ARG_SIN
|- ∀z. z ≠ 0 ⇒ (sin (arg z) = IM z / modu z)
RE_MODU_ARG
|- ∀z. RE z = modu z * cos (arg z)
IM_MODU_ARG
|- ∀z. IM z = modu z * sin (arg z)
COMPLEX_TRIANGLE
|- ∀z. modu z * (cos (arg z),sin (arg z)) = z
COMPLEX_MODU_ARG_EQ
|- ∀z w. (z = w) ⇔ (modu z = modu w) ∧ (arg z = arg w)
MODU_UNIT
|- ∀x y. modu (cos x,sin x) = 1
COMPLEX_MUL_ARG
|- ∀x y. (cos x,sin x) * (cos y,sin y) = (cos (x + y),sin (x + y))
COMPLEX_INV_ARG
|- ∀x. inv (cos x,sin x) = (cos (-x),sin (-x))
COMPLEX_DIV_ARG
|- ∀x y. (cos x,sin x) / (cos y,sin y) = (cos (x − y),sin (x − y))
complex_pow_def_compute
|- (∀z. z pow 0 = 1) ∧
   (∀z n. z pow NUMERAL (BIT1 n) = z * z pow (NUMERAL (BIT1 n) − 1)) ∧
   ∀z n. z pow NUMERAL (BIT2 n) = z * z pow NUMERAL (BIT1 n)
COMPLEX_POW_0
|- ∀n. 0 pow SUC n = 0
COMPLEX_POW_NZ
|- ∀z n. z ≠ 0 ⇒ z pow n ≠ 0
COMPLEX_POWINV
|- ∀z. z ≠ 0 ⇒ ∀n. inv (z pow n) = inv z pow n
MODU_COMPLEX_POW
|- ∀z n. modu (z pow n) = modu z pow n
COMPLEX_POW_ADD
|- ∀z m n. z pow (m + n) = z pow m * z pow n
COMPLEX_POW_1
|- ∀z. z pow 1 = z
COMPLEX_POW_2
|- ∀z. z pow 2 = z * z
COMPLEX_POW_ONE
|- ∀n. 1 pow n = 1
COMPLEX_POW_MUL
|- ∀n z w. (z * w) pow n = z pow n * w pow n
COMPLEX_POW_INV
|- ∀z n. inv z pow n = inv (z pow n)
COMPLEX_POW_DIV
|- ∀z w n. (z / w) pow n = z pow n / w pow n
COMPLEX_POW_L
|- ∀n k z. (k * z) pow n = k pow n * z pow n
COMPLEX_POW_ZERO
|- ∀n z. (z pow n = 0) ⇒ (z = 0)
COMPLEX_POW_ZERO_EQ
|- ∀n z. (z pow SUC n = 0) ⇔ (z = 0)
COMPLEX_POW_POW
|- ∀z m n. (z pow m) pow n = z pow (m * n)
DE_MOIVRE_LEMMA
|- ∀x n. (cos x,sin x) pow n = (cos (&n * x),sin (&n * x))
DE_MOIVRE_THM
|- ∀z n.
     (modu z * (cos (arg z),sin (arg z))) pow n =
     modu z pow n * (cos (&n * arg z),sin (&n * arg z))
EXP_IMAGINARY
|- ∀x. exp (i * x) = (cos x,sin x)
EULER_FORMULE
|- ∀z. modu z * exp (i * arg z) = z
COMPLEX_EXP_ADD
|- ∀z w. exp (z + w) = exp z * exp w
COMPLEX_EXP_NEG
|- ∀z. exp (-z) = inv (exp z)
COMPLEX_EXP_SUB
|- ∀z w. exp (z − w) = exp z / exp w
COMPLEX_EXP_N
|- ∀z n. exp (&n * z) = exp z pow n
COMPLEX_EXP_N2
|- ∀z n. exp (&n * z) = exp z pow n
COMPLEX_EXP_0
|- exp 0 = 1
COMPLEX_EXP_NZ
|- ∀z. exp z ≠ 0
COMPLEX_EXP_ADD_MUL
|- ∀z w. exp (z + w) * exp (-z) = exp w
COMPLEX_EXP_NEG_MUL
|- ∀z. exp z * exp (-z) = 1
COMPLEX_EXP_NEG_MUL2
|- ∀z. exp (-z) * exp z = 1