Theory "ieee"

Parents     transc

Signature

Type Arity
ccode 0
float 0
roundmode 0
Constant Type
Eq :ccode
Exponent :float -> num
Finite :float -> bool
Float :real -> float
Fraction :float -> num
Gt :ccode
Infinity :float -> bool
Isdenormal :float -> bool
Isintegral :float -> bool
Isnan :float -> bool
Isnormal :float -> bool
Iszero :float -> bool
Lt :ccode
Minus_infinity :float
Minus_zero :float
Plus_infinity :float
Plus_zero :float
ROUNDFLOAT :float -> float
Sign :float -> num
To_nearest :roundmode
To_ninfinity :roundmode
To_pinfinity :roundmode
Ulp :float -> real
Un :ccode
Val :float -> real
bias :num # num -> num
bottomfloat :num # num -> num # num # num
ccode2num :ccode -> num
ccode_CASE :ccode -> α -> α -> α -> α -> α
ccode_size :ccode -> num
closest :(α -> real) -> (α -> bool) -> (α -> bool) -> real -> α
defloat :float -> num # num # num
emax :num # num -> num
encoding :num # num -> num # num # num -> num
exponent :num # num # num -> num
expwidth :num # num -> num
fadd :num # num -> roundmode -> num # num # num -> num # num # num -> num # num # num
fcompare :num # num -> num # num # num -> num # num # num -> ccode
fdiv :num # num -> roundmode -> num # num # num -> num # num # num -> num # num # num
feq :num # num -> (num # num # num) reln
fge :num # num -> (num # num # num) reln
fgt :num # num -> (num # num # num) reln
fintrnd :num # num -> roundmode -> num # num # num -> num # num # num
fle :num # num -> (num # num # num) reln
float :num # num # num -> float
float_To_zero :roundmode
float_abs :float -> float
float_add :float -> float -> float
float_div :float -> float -> float
float_eq :float reln
float_format :num # num
float_ge :float reln
float_gt :float reln
float_le :float reln
float_lt :float reln
float_mul :float -> float -> float
float_neg :float -> float
float_rem :float -> float -> float
float_sqrt :float -> float
float_sub :float -> float -> float
flt :num # num -> (num # num # num) reln
fmul :num # num -> roundmode -> num # num # num -> num # num # num -> num # num # num
fneg :num # num -> roundmode -> num # num # num -> num # num # num
fraction :num # num # num -> num
fracwidth :num # num -> num
frem :num # num -> roundmode -> num # num # num -> num # num # num -> num # num # num
fsqrt :num # num -> roundmode -> num # num # num -> num # num # num
fsub :num # num -> roundmode -> num # num # num -> num # num # num -> num # num # num
intround :num # num -> roundmode -> real -> num # num # num
is_closest :(α -> real) -> (α -> bool) -> real -> α -> bool
is_denormal :num # num -> num # num # num -> bool
is_double :num reln
is_double_extended :num reln
is_finite :num # num -> num # num # num -> bool
is_infinity :num # num -> num # num # num -> bool
is_integral :num # num -> num # num # num -> bool
is_nan :num # num -> num # num # num -> bool
is_normal :num # num -> num # num # num -> bool
is_single :num reln
is_single_extended :num reln
is_valid :num # num -> num # num # num -> bool
is_zero :num # num -> num # num # num -> bool
largest :num # num -> real
minus :num # num -> num # num # num -> num # num # num
minus_infinity :num # num -> num # num # num
minus_zero :num # num -> num # num # num
num2ccode :num -> ccode
num2roundmode :num -> roundmode
plus_infinity :num # num -> num # num # num
plus_zero :num # num -> num # num # num
rem :real -> real -> real
round :num # num -> roundmode -> real -> num # num # num
roundmode2num :roundmode -> num
roundmode_CASE :roundmode -> α -> α -> α -> α -> α
roundmode_size :roundmode -> num
sign :num # num # num -> num
some_nan :num # num -> num # num # num
threshold :num # num -> real
topfloat :num # num -> num # num # num
ulp :num # num -> num # num # num -> real
valof :num # num -> num # num # num -> real
wordlength :num # num -> num
zerosign :num # num -> num -> num # num # num -> num # num # num

Definitions

expwidth
|- ∀ew fw. expwidth (ew,fw) = ew
fracwidth
|- ∀ew fw. fracwidth (ew,fw) = fw
wordlength
|- ∀X. wordlength X = expwidth X + fracwidth X + 1
emax
|- ∀X. emax X = 2 ** expwidth X − 1
bias
|- ∀X. bias X = 2 ** (expwidth X − 1) − 1
is_single
|- ∀X. is_single X ⇔ (expwidth X = 8) ∧ (wordlength X = 32)
is_double
|- ∀X. is_double X ⇔ (expwidth X = 11) ∧ (wordlength X = 64)
is_single_extended
|- ∀X. is_single_extended X ⇔ expwidth X ≥ 11 ∧ wordlength X ≥ 43
is_double_extended
|- ∀X. is_double_extended X ⇔ expwidth X ≥ 15 ∧ wordlength X ≥ 79
sign
|- ∀s e f. sign (s,e,f) = s
exponent
|- ∀s e f. exponent (s,e,f) = e
fraction
|- ∀s e f. fraction (s,e,f) = f
is_nan
|- ∀X a. is_nan X a ⇔ (exponent a = emax X) ∧ fraction a ≠ 0
is_infinity
|- ∀X a. is_infinity X a ⇔ (exponent a = emax X) ∧ (fraction a = 0)
is_normal
|- ∀X a. is_normal X a ⇔ 0 < exponent a ∧ exponent a < emax X
is_denormal
|- ∀X a. is_denormal X a ⇔ (exponent a = 0) ∧ fraction a ≠ 0
is_zero
|- ∀X a. is_zero X a ⇔ (exponent a = 0) ∧ (fraction a = 0)
is_valid
|- ∀X s e f.
     is_valid X (s,e,f) ⇔
     s < SUC (SUC 0) ∧ e < 2 ** expwidth X ∧ f < 2 ** fracwidth X
is_finite
|- ∀X a.
     is_finite X a ⇔
     is_valid X a ∧ (is_normal X a ∨ is_denormal X a ∨ is_zero X a)
plus_infinity
|- ∀X. plus_infinity X = (0,emax X,0)
minus_infinity
|- ∀X. minus_infinity X = (1,emax X,0)
plus_zero
|- ∀X. plus_zero X = (0,0,0)
minus_zero
|- ∀X. minus_zero X = (1,0,0)
topfloat
|- ∀X. topfloat X = (0,emax X − 1,2 ** fracwidth X − 1)
bottomfloat
|- ∀X. bottomfloat X = (1,emax X − 1,2 ** fracwidth X − 1)
minus
|- ∀X a. minus X a = (1 − sign a,exponent a,fraction a)
encoding
|- ∀X s e f.
     encoding X (s,e,f) =
     s * 2 ** (wordlength X − 1) + e * 2 ** fracwidth X + f
valof
|- ∀X s e f.
     valof X (s,e,f) =
     if e = 0 then -1 pow s * (2 / 2 pow bias X) * (&f / 2 pow fracwidth X)
     else -1 pow s * (2 pow e / 2 pow bias X) * (1 + &f / 2 pow fracwidth X)
largest
|- ∀X.
     largest X =
     2 pow (emax X − 1) / 2 pow bias X * (2 − inv (2 pow fracwidth X))
threshold
|- ∀X.
     threshold X =
     2 pow (emax X − 1) / 2 pow bias X * (2 − inv (2 pow SUC (fracwidth X)))
ulp
|- ∀X a. ulp X a = valof X (0,exponent a,1) − valof X (0,exponent a,0)
roundmode_TY_DEF
|- ∃rep. TYPE_DEFINITION (λn. n < 4) rep
roundmode_BIJ
|- (∀a. num2roundmode (roundmode2num a) = a) ∧
   ∀r. (λn. n < 4) r ⇔ (roundmode2num (num2roundmode r) = r)
roundmode_size_def
|- ∀x. roundmode_size x = 0
roundmode_CASE
|- ∀x v0 v1 v2 v3.
     (case x of
        To_nearest => v0
      | float_To_zero => v1
      | To_pinfinity => v2
      | To_ninfinity => v3) =
     (λm.
        if m < 1 then v0 else if m < 2 then v1 else if m = 2 then v2 else v3)
       (roundmode2num x)
is_closest
|- ∀v s x a.
     is_closest v s x a ⇔ a ∈ s ∧ ∀b. b ∈ s ⇒ abs (v a − x) ≤ abs (v b − x)
closest
|- ∀v p s x.
     closest v p s x =
     @a. is_closest v s x a ∧ ((∃b. is_closest v s x b ∧ p b) ⇒ p a)
round_def
|- (∀X x.
      round X To_nearest x =
      if x ≤ -threshold X then minus_infinity X
      else if x ≥ threshold X then plus_infinity X
      else closest (valof X) (λa. EVEN (fraction a)) {a | is_finite X a} x) ∧
   (∀X x.
      round X float_To_zero x =
      if x < -largest X then bottomfloat X
      else if x > largest X then topfloat X
      else
        closest (valof X) (λx. T)
          {a | is_finite X a ∧ abs (valof X a) ≤ abs x} x) ∧
   (∀X x.
      round X To_pinfinity x =
      if x < -largest X then bottomfloat X
      else if x > largest X then plus_infinity X
      else closest (valof X) (λx. T) {a | is_finite X a ∧ valof X a ≥ x} x) ∧
   ∀X x.
     round X To_ninfinity x =
     if x < -largest X then minus_infinity X
     else if x > largest X then topfloat X
     else closest (valof X) (λx. T) {a | is_finite X a ∧ valof X a ≤ x} x
is_integral
|- ∀X a. is_integral X a ⇔ is_finite X a ∧ ∃n. abs (valof X a) = &n
intround_def
|- (∀X x.
      intround X To_nearest x =
      if x ≤ -threshold X then minus_infinity X
      else if x ≥ threshold X then plus_infinity X
      else
        closest (valof X) (λa. ∃n. EVEN n ∧ (abs (valof X a) = &n))
          {a | is_integral X a} x) ∧
   (∀X x.
      intround X float_To_zero x =
      if x < -largest X then bottomfloat X
      else if x > largest X then topfloat X
      else
        closest (valof X) (λx. T)
          {a | is_integral X a ∧ abs (valof X a) ≤ abs x} x) ∧
   (∀X x.
      intround X To_pinfinity x =
      if x < -largest X then bottomfloat X
      else if x > largest X then plus_infinity X
      else
        closest (valof X) (λx. T) {a | is_integral X a ∧ valof X a ≥ x} x) ∧
   ∀X x.
     intround X To_ninfinity x =
     if x < -largest X then minus_infinity X
     else if x > largest X then topfloat X
     else closest (valof X) (λx. T) {a | is_integral X a ∧ valof X a ≤ x} x
some_nan
|- ∀X. some_nan X = @a. is_nan X a
zerosign
|- ∀X s a.
     zerosign X s a =
     if is_zero X a then if s = 0 then plus_zero X else minus_zero X else a
rem
|- ∀x y.
     x rem y =
     (let n =
            closest I (λx. ∃n. EVEN n ∧ (abs x = &n)) {x | ∃n. abs x = &n}
              (x / y)
      in
        x − n * y)
fintrnd
|- ∀X m a.
     fintrnd X m a =
     if is_nan X a then some_nan X
     else if is_infinity X a then a
     else zerosign X (sign a) (intround X m (valof X a))
fadd
|- ∀X m a b.
     fadd X m a b =
     if
       is_nan X a ∨ is_nan X b ∨
       is_infinity X a ∧ is_infinity X b ∧ sign a ≠ sign b
     then
       some_nan X
     else if is_infinity X a then a
     else if is_infinity X b then b
     else
       zerosign X
         (if is_zero X a ∧ is_zero X b ∧ (sign a = sign b) then sign a
          else if m = To_ninfinity then 1
          else 0) (round X m (valof X a + valof X b))
fsub
|- ∀X m a b.
     fsub X m a b =
     if
       is_nan X a ∨ is_nan X b ∨
       is_infinity X a ∧ is_infinity X b ∧ (sign a = sign b)
     then
       some_nan X
     else if is_infinity X a then a
     else if is_infinity X b then minus X b
     else
       zerosign X
         (if is_zero X a ∧ is_zero X b ∧ sign a ≠ sign b then sign a
          else if m = To_ninfinity then 1
          else 0) (round X m (valof X a − valof X b))
fmul
|- ∀X m a b.
     fmul X m a b =
     if
       is_nan X a ∨ is_nan X b ∨ is_zero X a ∧ is_infinity X b ∨
       is_infinity X a ∧ is_zero X b
     then
       some_nan X
     else if is_infinity X a ∨ is_infinity X b then
       if sign a = sign b then plus_infinity X else minus_infinity X
     else
       zerosign X (if sign a = sign b then 0 else 1)
         (round X m (valof X a * valof X b))
fdiv
|- ∀X m a b.
     fdiv X m a b =
     if
       is_nan X a ∨ is_nan X b ∨ is_zero X a ∧ is_zero X b ∨
       is_infinity X a ∧ is_infinity X b
     then
       some_nan X
     else if is_infinity X a ∨ is_zero X b then
       if sign a = sign b then plus_infinity X else minus_infinity X
     else if is_infinity X b then
       if sign a = sign b then plus_zero X else minus_zero X
     else
       zerosign X (if sign a = sign b then 0 else 1)
         (round X m (valof X a / valof X b))
fsqrt
|- ∀X m a.
     fsqrt X m a =
     if is_nan X a then some_nan X
     else if is_zero X a ∨ is_infinity X a ∧ (sign a = 0) then a
     else if sign a = 1 then some_nan X
     else zerosign X (sign a) (round X m (sqrt (valof X a)))
frem
|- ∀X m a b.
     frem X m a b =
     if is_nan X a ∨ is_nan X b ∨ is_infinity X a ∨ is_zero X b then
       some_nan X
     else if is_infinity X b then a
     else zerosign X (sign a) (round X m (valof X a rem valof X b))
fneg
|- ∀X m a. fneg X m a = (1 − sign a,exponent a,fraction a)
ccode_TY_DEF
|- ∃rep. TYPE_DEFINITION (λn. n < 4) rep
ccode_BIJ
|- (∀a. num2ccode (ccode2num a) = a) ∧
   ∀r. (λn. n < 4) r ⇔ (ccode2num (num2ccode r) = r)
ccode_size_def
|- ∀x. ccode_size x = 0
ccode_CASE
|- ∀x v0 v1 v2 v3.
     (case x of Gt => v0 | Lt => v1 | Eq => v2 | Un => v3) =
     (λm.
        if m < 1 then v0 else if m < 2 then v1 else if m = 2 then v2 else v3)
       (ccode2num x)
fcompare
|- ∀X a b.
     fcompare X a b =
     if is_nan X a ∨ is_nan X b then Un
     else if is_infinity X a ∧ (sign a = 1) then
       if is_infinity X b ∧ (sign b = 1) then Eq else Lt
     else if is_infinity X a ∧ (sign a = 0) then
       if is_infinity X b ∧ (sign b = 0) then Eq else Gt
     else if is_infinity X b ∧ (sign b = 1) then Gt
     else if is_infinity X b ∧ (sign b = 0) then Lt
     else if valof X a < valof X b then Lt
     else if valof X a = valof X b then Eq
     else Gt
flt
|- ∀X a b. flt X a b ⇔ (fcompare X a b = Lt)
fle
|- ∀X a b. fle X a b ⇔ (fcompare X a b = Lt) ∨ (fcompare X a b = Eq)
fgt
|- ∀X a b. fgt X a b ⇔ (fcompare X a b = Gt)
fge
|- ∀X a b. fge X a b ⇔ (fcompare X a b = Gt) ∨ (fcompare X a b = Eq)
feq
|- ∀X a b. feq X a b ⇔ (fcompare X a b = Eq)
float_format
|- float_format = (8,23)
float_TY_DEF
|- ∃rep. TYPE_DEFINITION (is_valid float_format) rep
float_tybij
|- (∀a. float (defloat a) = a) ∧
   ∀r. is_valid float_format r ⇔ (defloat (float r) = r)
Val
|- ∀a. Val a = valof float_format (defloat a)
Float
|- ∀x. Float x = float (round float_format To_nearest x)
Sign
|- ∀a. Sign a = sign (defloat a)
Exponent
|- ∀a. Exponent a = exponent (defloat a)
Fraction
|- ∀a. Fraction a = fraction (defloat a)
Ulp
|- ∀a. Ulp a = ulp float_format (defloat a)
Isnan
|- ∀a. Isnan a ⇔ is_nan float_format (defloat a)
Infinity
|- ∀a. Infinity a ⇔ is_infinity float_format (defloat a)
Isnormal
|- ∀a. Isnormal a ⇔ is_normal float_format (defloat a)
Isdenormal
|- ∀a. Isdenormal a ⇔ is_denormal float_format (defloat a)
Iszero
|- ∀a. Iszero a ⇔ is_zero float_format (defloat a)
Finite
|- ∀a. Finite a ⇔ Isnormal a ∨ Isdenormal a ∨ Iszero a
Isintegral
|- ∀a. Isintegral a ⇔ is_integral float_format (defloat a)
Plus_zero
|- Plus_zero = float (plus_zero float_format)
Minus_zero
|- Minus_zero = float (minus_zero float_format)
Minus_infinity
|- Minus_infinity = float (minus_infinity float_format)
Plus_infinity
|- Plus_infinity = float (plus_infinity float_format)
float_add
|- ∀a b. a + b = float (fadd float_format To_nearest (defloat a) (defloat b))
float_sub
|- ∀a b. a − b = float (fsub float_format To_nearest (defloat a) (defloat b))
float_mul
|- ∀a b. a * b = float (fmul float_format To_nearest (defloat a) (defloat b))
float_div
|- ∀a b. a / b = float (fdiv float_format To_nearest (defloat a) (defloat b))
float_rem
|- ∀a b.
     a float_rem b =
     float (frem float_format To_nearest (defloat a) (defloat b))
float_sqrt
|- ∀a. float_sqrt a = float (fsqrt float_format To_nearest (defloat a))
ROUNDFLOAT
|- ∀a. ROUNDFLOAT a = float (fintrnd float_format To_nearest (defloat a))
float_lt
|- ∀a b. a < b ⇔ flt float_format (defloat a) (defloat b)
float_le
|- ∀a b. a ≤ b ⇔ fle float_format (defloat a) (defloat b)
float_gt
|- ∀a b. a > b ⇔ fgt float_format (defloat a) (defloat b)
float_ge
|- ∀a b. a ≥ b ⇔ fge float_format (defloat a) (defloat b)
float_eq
|- ∀a b. a == b ⇔ feq float_format (defloat a) (defloat b)
float_neg
|- ∀a. ¬a = float (fneg float_format To_nearest (defloat a))
float_abs
|- ∀a. float_abs a = if a ≥ Plus_zero then a else ¬a


Theorems

num2roundmode_roundmode2num
|- ∀a. num2roundmode (roundmode2num a) = a
roundmode2num_num2roundmode
|- ∀r. r < 4 ⇔ (roundmode2num (num2roundmode r) = r)
num2roundmode_11
|- ∀r r'. r < 4 ⇒ r' < 4 ⇒ ((num2roundmode r = num2roundmode r') ⇔ (r = r'))
roundmode2num_11
|- ∀a a'. (roundmode2num a = roundmode2num a') ⇔ (a = a')
num2roundmode_ONTO
|- ∀a. ∃r. (a = num2roundmode r) ∧ r < 4
roundmode2num_ONTO
|- ∀r. r < 4 ⇔ ∃a. r = roundmode2num a
num2roundmode_thm
|- (num2roundmode 0 = To_nearest) ∧ (num2roundmode 1 = float_To_zero) ∧
   (num2roundmode 2 = To_pinfinity) ∧ (num2roundmode 3 = To_ninfinity)
roundmode2num_thm
|- (roundmode2num To_nearest = 0) ∧ (roundmode2num float_To_zero = 1) ∧
   (roundmode2num To_pinfinity = 2) ∧ (roundmode2num To_ninfinity = 3)
roundmode_EQ_roundmode
|- ∀a a'. (a = a') ⇔ (roundmode2num a = roundmode2num a')
roundmode_case_def
|- (∀v0 v1 v2 v3.
      (case To_nearest of
         To_nearest => v0
       | float_To_zero => v1
       | To_pinfinity => v2
       | To_ninfinity => v3) =
      v0) ∧
   (∀v0 v1 v2 v3.
      (case float_To_zero of
         To_nearest => v0
       | float_To_zero => v1
       | To_pinfinity => v2
       | To_ninfinity => v3) =
      v1) ∧
   (∀v0 v1 v2 v3.
      (case To_pinfinity of
         To_nearest => v0
       | float_To_zero => v1
       | To_pinfinity => v2
       | To_ninfinity => v3) =
      v2) ∧
   ∀v0 v1 v2 v3.
     (case To_ninfinity of
        To_nearest => v0
      | float_To_zero => v1
      | To_pinfinity => v2
      | To_ninfinity => v3) =
     v3
datatype_roundmode
|- DATATYPE (roundmode To_nearest float_To_zero To_pinfinity To_ninfinity)
roundmode_distinct
|- To_nearest ≠ float_To_zero ∧ To_nearest ≠ To_pinfinity ∧
   To_nearest ≠ To_ninfinity ∧ float_To_zero ≠ To_pinfinity ∧
   float_To_zero ≠ To_ninfinity ∧ To_pinfinity ≠ To_ninfinity
roundmode_case_cong
|- ∀M M' v0 v1 v2 v3.
     (M = M') ∧ ((M' = To_nearest) ⇒ (v0 = v0')) ∧
     ((M' = float_To_zero) ⇒ (v1 = v1')) ∧
     ((M' = To_pinfinity) ⇒ (v2 = v2')) ∧ ((M' = To_ninfinity) ⇒ (v3 = v3')) ⇒
     ((case M of
         To_nearest => v0
       | float_To_zero => v1
       | To_pinfinity => v2
       | To_ninfinity => v3) =
      case M' of
        To_nearest => v0'
      | float_To_zero => v1'
      | To_pinfinity => v2'
      | To_ninfinity => v3')
roundmode_nchotomy
|- ∀a.
     (a = To_nearest) ∨ (a = float_To_zero) ∨ (a = To_pinfinity) ∨
     (a = To_ninfinity)
roundmode_Axiom
|- ∀x0 x1 x2 x3.
     ∃f.
       (f To_nearest = x0) ∧ (f float_To_zero = x1) ∧ (f To_pinfinity = x2) ∧
       (f To_ninfinity = x3)
roundmode_induction
|- ∀P.
     P To_nearest ∧ P To_ninfinity ∧ P To_pinfinity ∧ P float_To_zero ⇒
     ∀a. P a
num2ccode_ccode2num
|- ∀a. num2ccode (ccode2num a) = a
ccode2num_num2ccode
|- ∀r. r < 4 ⇔ (ccode2num (num2ccode r) = r)
num2ccode_11
|- ∀r r'. r < 4 ⇒ r' < 4 ⇒ ((num2ccode r = num2ccode r') ⇔ (r = r'))
ccode2num_11
|- ∀a a'. (ccode2num a = ccode2num a') ⇔ (a = a')
num2ccode_ONTO
|- ∀a. ∃r. (a = num2ccode r) ∧ r < 4
ccode2num_ONTO
|- ∀r. r < 4 ⇔ ∃a. r = ccode2num a
num2ccode_thm
|- (num2ccode 0 = Gt) ∧ (num2ccode 1 = Lt) ∧ (num2ccode 2 = Eq) ∧
   (num2ccode 3 = Un)
ccode2num_thm
|- (ccode2num Gt = 0) ∧ (ccode2num Lt = 1) ∧ (ccode2num Eq = 2) ∧
   (ccode2num Un = 3)
ccode_EQ_ccode
|- ∀a a'. (a = a') ⇔ (ccode2num a = ccode2num a')
ccode_case_def
|- (∀v0 v1 v2 v3.
      (case Gt of Gt => v0 | Lt => v1 | Eq => v2 | Un => v3) = v0) ∧
   (∀v0 v1 v2 v3.
      (case Lt of Gt => v0 | Lt => v1 | Eq => v2 | Un => v3) = v1) ∧
   (∀v0 v1 v2 v3.
      (case Eq of Gt => v0 | Lt => v1 | Eq => v2 | Un => v3) = v2) ∧
   ∀v0 v1 v2 v3. (case Un of Gt => v0 | Lt => v1 | Eq => v2 | Un => v3) = v3
datatype_ccode
|- DATATYPE (ccode Gt Lt Eq Un)
ccode_distinct
|- Gt ≠ Lt ∧ Gt ≠ Eq ∧ Gt ≠ Un ∧ Lt ≠ Eq ∧ Lt ≠ Un ∧ Eq ≠ Un
ccode_case_cong
|- ∀M M' v0 v1 v2 v3.
     (M = M') ∧ ((M' = Gt) ⇒ (v0 = v0')) ∧ ((M' = Lt) ⇒ (v1 = v1')) ∧
     ((M' = Eq) ⇒ (v2 = v2')) ∧ ((M' = Un) ⇒ (v3 = v3')) ⇒
     ((case M of Gt => v0 | Lt => v1 | Eq => v2 | Un => v3) =
      case M' of Gt => v0' | Lt => v1' | Eq => v2' | Un => v3')
ccode_nchotomy
|- ∀a. (a = Gt) ∨ (a = Lt) ∨ (a = Eq) ∨ (a = Un)
ccode_Axiom
|- ∀x0 x1 x2 x3. ∃f. (f Gt = x0) ∧ (f Lt = x1) ∧ (f Eq = x2) ∧ (f Un = x3)
ccode_induction
|- ∀P. P Eq ∧ P Gt ∧ P Lt ∧ P Un ⇒ ∀a. P a