Theory "ind_type"

Parents     while   numeral

Signature

Type Arity
recspace 1
Constant Type
BOTTOM :α recspace
CONSTR :num -> α -> (num -> α recspace) -> α recspace
FCONS :α -> (num -> α) -> num -> α
FNIL :num -> α
INJA :α -> num -> α -> bool
INJF :(num -> num -> α -> bool) -> num -> α -> bool
INJN :num -> num -> α -> bool
INJP :(num -> α -> bool) -> (num -> α -> bool) -> num -> α -> bool
ISO :(α -> β) -> (β -> α) -> bool
NUMFST :num -> num
NUMLEFT :num -> bool
NUMPAIR :num -> num -> num
NUMRIGHT :num -> num
NUMSND :num -> num
NUMSUM :bool -> num -> num
ZBOT :num -> α -> bool
ZCONSTR :num -> α -> (num -> num -> α -> bool) -> num -> α -> bool
ZRECSPACE :(num -> α -> bool) -> bool
dest_rec :α recspace -> num -> α -> bool
mk_rec :(num -> α -> bool) -> α recspace

Definitions

NUMPAIR
|- ∀x y. ind_type$NUMPAIR x y = 2 ** x * (2 * y + 1)
NUMPAIR_DEST
|- ∀x y.
     (NUMFST (ind_type$NUMPAIR x y) = x) ∧ (NUMSND (ind_type$NUMPAIR x y) = y)
NUMSUM
|- ∀b x. ind_type$NUMSUM b x = if b then SUC (2 * x) else 2 * x
NUMSUM_DEST
|- ∀x y.
     (NUMLEFT (ind_type$NUMSUM x y) ⇔ x) ∧
     (NUMRIGHT (ind_type$NUMSUM x y) = y)
INJN
|- ∀m. ind_type$INJN m = (λn a. n = m)
INJA
|- ∀a. ind_type$INJA a = (λn b. b = a)
INJF
|- ∀f. ind_type$INJF f = (λn. f (NUMFST n) (NUMSND n))
INJP
|- ∀f1 f2.
     ind_type$INJP f1 f2 =
     (λn a. if NUMLEFT n then f1 (NUMRIGHT n) a else f2 (NUMRIGHT n) a)
ZCONSTR
|- ∀c i r.
     ind_type$ZCONSTR c i r =
     ind_type$INJP (ind_type$INJN (SUC c))
       (ind_type$INJP (ind_type$INJA i) (ind_type$INJF r))
ZBOT
|- ind_type$ZBOT = ind_type$INJP (ind_type$INJN 0) (@z. T)
ZRECSPACE_def
|- ZRECSPACE =
   (λa0.
      ∀ZRECSPACE'.
        (∀a0.
           (a0 = ind_type$ZBOT) ∨
           (∃c i r. (a0 = ind_type$ZCONSTR c i r) ∧ ∀n. ZRECSPACE' (r n)) ⇒
           ZRECSPACE' a0) ⇒
        ZRECSPACE' a0)
recspace_TY_DEF
|- ∃rep. TYPE_DEFINITION ZRECSPACE rep
recspace_repfns
|- (∀a. mk_rec (dest_rec a) = a) ∧ ∀r. ZRECSPACE r ⇔ (dest_rec (mk_rec r) = r)
BOTTOM
|- ind_type$BOTTOM = mk_rec ind_type$ZBOT
CONSTR
|- ∀c i r.
     ind_type$CONSTR c i r =
     mk_rec (ind_type$ZCONSTR c i (λn. dest_rec (r n)))
FCONS
|- (∀a f. ind_type$FCONS a f 0 = a) ∧ ∀a f n. ind_type$FCONS a f (SUC n) = f n
FNIL
|- ∀n. ind_type$FNIL n = ARB
ISO
|- ∀f g. ind_type$ISO f g ⇔ (∀x. f (g x) = x) ∧ ∀y. g (f y) = y


Theorems

INJ_INVERSE2
|- ∀P.
     (∀x1 y1 x2 y2. (P x1 y1 = P x2 y2) ⇔ (x1 = x2) ∧ (y1 = y2)) ⇒
     ∃X Y. ∀x y. (X (P x y) = x) ∧ (Y (P x y) = y)
NUMPAIR_INJ_LEMMA
|- ∀x1 y1 x2 y2. (ind_type$NUMPAIR x1 y1 = ind_type$NUMPAIR x2 y2) ⇒ (x1 = x2)
NUMPAIR_INJ
|- ∀x1 y1 x2 y2.
     (ind_type$NUMPAIR x1 y1 = ind_type$NUMPAIR x2 y2) ⇔ (x1 = x2) ∧ (y1 = y2)
NUMSUM_INJ
|- ∀b1 x1 b2 x2.
     (ind_type$NUMSUM b1 x1 = ind_type$NUMSUM b2 x2) ⇔ (b1 ⇔ b2) ∧ (x1 = x2)
INJN_INJ
|- ∀n1 n2. (ind_type$INJN n1 = ind_type$INJN n2) ⇔ (n1 = n2)
INJA_INJ
|- ∀a1 a2. (ind_type$INJA a1 = ind_type$INJA a2) ⇔ (a1 = a2)
INJF_INJ
|- ∀f1 f2. (ind_type$INJF f1 = ind_type$INJF f2) ⇔ (f1 = f2)
INJP_INJ
|- ∀f1 f1' f2 f2'.
     (ind_type$INJP f1 f2 = ind_type$INJP f1' f2') ⇔ (f1 = f1') ∧ (f2 = f2')
ZCONSTR_ZBOT
|- ∀c i r. ind_type$ZCONSTR c i r ≠ ind_type$ZBOT
ZRECSPACE_rules
|- ZRECSPACE ind_type$ZBOT ∧
   ∀c i r. (∀n. ZRECSPACE (r n)) ⇒ ZRECSPACE (ind_type$ZCONSTR c i r)
ZRECSPACE_ind
|- ∀ZRECSPACE'.
     ZRECSPACE' ind_type$ZBOT ∧
     (∀c i r. (∀n. ZRECSPACE' (r n)) ⇒ ZRECSPACE' (ind_type$ZCONSTR c i r)) ⇒
     ∀a0. ZRECSPACE a0 ⇒ ZRECSPACE' a0
ZRECSPACE_strongind
|- ∀ZRECSPACE'.
     ZRECSPACE' ind_type$ZBOT ∧
     (∀c i r.
        (∀n. ZRECSPACE (r n) ∧ ZRECSPACE' (r n)) ⇒
        ZRECSPACE' (ind_type$ZCONSTR c i r)) ⇒
     ∀a0. ZRECSPACE a0 ⇒ ZRECSPACE' a0
ZRECSPACE_cases
|- ∀a0.
     ZRECSPACE a0 ⇔
     (a0 = ind_type$ZBOT) ∨
     ∃c i r. (a0 = ind_type$ZCONSTR c i r) ∧ ∀n. ZRECSPACE (r n)
MK_REC_INJ
|- ∀x y. (mk_rec x = mk_rec y) ⇒ ZRECSPACE x ∧ ZRECSPACE y ⇒ (x = y)
DEST_REC_INJ
|- ∀x y. (dest_rec x = dest_rec y) ⇔ (x = y)
CONSTR_BOT
|- ∀c i r. ind_type$CONSTR c i r ≠ ind_type$BOTTOM
CONSTR_INJ
|- ∀c1 i1 r1 c2 i2 r2.
     (ind_type$CONSTR c1 i1 r1 = ind_type$CONSTR c2 i2 r2) ⇔
     (c1 = c2) ∧ (i1 = i2) ∧ (r1 = r2)
CONSTR_IND
|- ∀P.
     P ind_type$BOTTOM ∧ (∀c i r. (∀n. P (r n)) ⇒ P (ind_type$CONSTR c i r)) ⇒
     ∀x. P x
CONSTR_REC
|- ∀Fn. ∃f. ∀c i r. f (ind_type$CONSTR c i r) = Fn c i r (λn. f (r n))
FCONS_DEST
|- ind_type$FCONS a f n = if n = 0 then a else f (n − 1)
ISO_REFL
|- ind_type$ISO (λx. x) (λx. x)
ISO_FUN
|- ind_type$ISO f f' ∧ ind_type$ISO g g' ⇒
   ind_type$ISO (λh a'. g (h (f' a'))) (λh a. g' (h (f a)))
ISO_USAGE
|- ind_type$ISO f g ⇒
   (∀P. (∀x. P x) ⇔ ∀x. P (g x)) ∧ (∀P. (∃x. P x) ⇔ ∃x. P (g x)) ∧
   ∀a b. (a = g b) ⇔ (f a = b)