Theory "numeral"

Parents     arithmetic

Signature

Constant Type
exactlog :num -> num
iBIT_cases :num -> α -> (num -> α) -> (num -> α) -> α
iDUB :num -> num
iSQR :num -> num
iSUB :bool -> num -> num -> num
iZ :num -> num
iiSUC :num -> num
internal_mult :num -> num -> num
onecount :num -> num -> num
texp_help :num -> num -> num

Definitions

iZ
|- ∀x. numeral$iZ x = x
iiSUC
|- ∀n. numeral$iiSUC n = SUC (SUC n)
iBIT_cases
|- (∀zf bf1 bf2. iBIT_cases ZERO zf bf1 bf2 = zf) ∧
   (∀n zf bf1 bf2. iBIT_cases (BIT1 n) zf bf1 bf2 = bf1 n) ∧
   ∀n zf bf1 bf2. iBIT_cases (BIT2 n) zf bf1 bf2 = bf2 n
iDUB
|- ∀x. numeral$iDUB x = x + x
iSUB_DEF
|- (∀b x. numeral$iSUB b ZERO x = ZERO) ∧
   (∀b n x.
      numeral$iSUB b (BIT1 n) x =
      if b then
        iBIT_cases x (BIT1 n) (λm. numeral$iDUB (numeral$iSUB T n m))
          (λm. BIT1 (numeral$iSUB F n m))
      else
        iBIT_cases x (numeral$iDUB n) (λm. BIT1 (numeral$iSUB F n m))
          (λm. numeral$iDUB (numeral$iSUB F n m))) ∧
   ∀b n x.
     numeral$iSUB b (BIT2 n) x =
     if b then
       iBIT_cases x (BIT2 n) (λm. BIT1 (numeral$iSUB T n m))
         (λm. numeral$iDUB (numeral$iSUB T n m))
     else
       iBIT_cases x (BIT1 n) (λm. numeral$iDUB (numeral$iSUB T n m))
         (λm. BIT1 (numeral$iSUB F n m))
iSQR
|- ∀x. numeral$iSQR x = x * x
texp_help_def
|- (∀acc. numeral$texp_help 0 acc = BIT2 acc) ∧
   ∀n acc. numeral$texp_help (SUC n) acc = numeral$texp_help n (BIT1 acc)
onecount_def
|- (∀x. numeral$onecount ZERO x = x) ∧
   (∀n x. numeral$onecount (BIT1 n) x = numeral$onecount n (SUC x)) ∧
   ∀n x. numeral$onecount (BIT2 n) x = ZERO
exactlog_def
|- (numeral$exactlog ZERO = ZERO) ∧ (∀n. numeral$exactlog (BIT1 n) = ZERO) ∧
   ∀n.
     numeral$exactlog (BIT2 n) =
     (let x = numeral$onecount n ZERO in if x = ZERO then ZERO else BIT1 x)
internal_mult_def
|- internal_mult = $*


Theorems

numeral_suc
|- (SUC ZERO = BIT1 ZERO) ∧ (∀n. SUC (BIT1 n) = BIT2 n) ∧
   ∀n. SUC (BIT2 n) = BIT1 (SUC n)
numeral_distrib
|- (∀n. 0 + n = n) ∧ (∀n. n + 0 = n) ∧
   (∀n m. NUMERAL n + NUMERAL m = NUMERAL (numeral$iZ (n + m))) ∧
   (∀n. 0 * n = 0) ∧ (∀n. n * 0 = 0) ∧
   (∀n m. NUMERAL n * NUMERAL m = NUMERAL (n * m)) ∧ (∀n. 0 − n = 0) ∧
   (∀n. n − 0 = n) ∧ (∀n m. NUMERAL n − NUMERAL m = NUMERAL (n − m)) ∧
   (∀n. 0 ** NUMERAL (BIT1 n) = 0) ∧ (∀n. 0 ** NUMERAL (BIT2 n) = 0) ∧
   (∀n. n ** 0 = 1) ∧ (∀n m. NUMERAL n ** NUMERAL m = NUMERAL (n ** m)) ∧
   (SUC 0 = 1) ∧ (∀n. SUC (NUMERAL n) = NUMERAL (SUC n)) ∧ (PRE 0 = 0) ∧
   (∀n. PRE (NUMERAL n) = NUMERAL (PRE n)) ∧
   (∀n. (NUMERAL n = 0) ⇔ (n = ZERO)) ∧ (∀n. (0 = NUMERAL n) ⇔ (n = ZERO)) ∧
   (∀n m. (NUMERAL n = NUMERAL m) ⇔ (n = m)) ∧ (∀n. n < 0 ⇔ F) ∧
   (∀n. 0 < NUMERAL n ⇔ ZERO < n) ∧ (∀n m. NUMERAL n < NUMERAL m ⇔ n < m) ∧
   (∀n. 0 > n ⇔ F) ∧ (∀n. NUMERAL n > 0 ⇔ ZERO < n) ∧
   (∀n m. NUMERAL n > NUMERAL m ⇔ m < n) ∧ (∀n. 0 ≤ n ⇔ T) ∧
   (∀n. NUMERAL n ≤ 0 ⇔ n ≤ ZERO) ∧ (∀n m. NUMERAL n ≤ NUMERAL m ⇔ n ≤ m) ∧
   (∀n. n ≥ 0 ⇔ T) ∧ (∀n. 0 ≥ n ⇔ (n = 0)) ∧
   (∀n m. NUMERAL n ≥ NUMERAL m ⇔ m ≤ n) ∧ (∀n. ODD (NUMERAL n) ⇔ ODD n) ∧
   (∀n. EVEN (NUMERAL n) ⇔ EVEN n) ∧ ¬ODD 0 ∧ EVEN 0
numeral_iisuc
|- (numeral$iiSUC ZERO = BIT2 ZERO) ∧
   (numeral$iiSUC (BIT1 n) = BIT1 (SUC n)) ∧
   (numeral$iiSUC (BIT2 n) = BIT2 (SUC n))
numeral_add
|- ∀n m.
     (numeral$iZ (ZERO + n) = n) ∧ (numeral$iZ (n + ZERO) = n) ∧
     (numeral$iZ (BIT1 n + BIT1 m) = BIT2 (numeral$iZ (n + m))) ∧
     (numeral$iZ (BIT1 n + BIT2 m) = BIT1 (SUC (n + m))) ∧
     (numeral$iZ (BIT2 n + BIT1 m) = BIT1 (SUC (n + m))) ∧
     (numeral$iZ (BIT2 n + BIT2 m) = BIT2 (SUC (n + m))) ∧
     (SUC (ZERO + n) = SUC n) ∧ (SUC (n + ZERO) = SUC n) ∧
     (SUC (BIT1 n + BIT1 m) = BIT1 (SUC (n + m))) ∧
     (SUC (BIT1 n + BIT2 m) = BIT2 (SUC (n + m))) ∧
     (SUC (BIT2 n + BIT1 m) = BIT2 (SUC (n + m))) ∧
     (SUC (BIT2 n + BIT2 m) = BIT1 (numeral$iiSUC (n + m))) ∧
     (numeral$iiSUC (ZERO + n) = numeral$iiSUC n) ∧
     (numeral$iiSUC (n + ZERO) = numeral$iiSUC n) ∧
     (numeral$iiSUC (BIT1 n + BIT1 m) = BIT2 (SUC (n + m))) ∧
     (numeral$iiSUC (BIT1 n + BIT2 m) = BIT1 (numeral$iiSUC (n + m))) ∧
     (numeral$iiSUC (BIT2 n + BIT1 m) = BIT1 (numeral$iiSUC (n + m))) ∧
     (numeral$iiSUC (BIT2 n + BIT2 m) = BIT2 (numeral$iiSUC (n + m)))
numeral_eq
|- ∀n m.
     ((ZERO = BIT1 n) ⇔ F) ∧ ((BIT1 n = ZERO) ⇔ F) ∧ ((ZERO = BIT2 n) ⇔ F) ∧
     ((BIT2 n = ZERO) ⇔ F) ∧ ((BIT1 n = BIT2 m) ⇔ F) ∧
     ((BIT2 n = BIT1 m) ⇔ F) ∧ ((BIT1 n = BIT1 m) ⇔ (n = m)) ∧
     ((BIT2 n = BIT2 m) ⇔ (n = m))
numeral_lt
|- ∀n m.
     (ZERO < BIT1 n ⇔ T) ∧ (ZERO < BIT2 n ⇔ T) ∧ (n < ZERO ⇔ F) ∧
     (BIT1 n < BIT1 m ⇔ n < m) ∧ (BIT2 n < BIT2 m ⇔ n < m) ∧
     (BIT1 n < BIT2 m ⇔ ¬(m < n)) ∧ (BIT2 n < BIT1 m ⇔ n < m)
numeral_lte
|- ∀n m.
     (ZERO ≤ n ⇔ T) ∧ (BIT1 n ≤ ZERO ⇔ F) ∧ (BIT2 n ≤ ZERO ⇔ F) ∧
     (BIT1 n ≤ BIT1 m ⇔ n ≤ m) ∧ (BIT1 n ≤ BIT2 m ⇔ n ≤ m) ∧
     (BIT2 n ≤ BIT1 m ⇔ ¬(m ≤ n)) ∧ (BIT2 n ≤ BIT2 m ⇔ n ≤ m)
numeral_pre
|- (PRE ZERO = ZERO) ∧ (PRE (BIT1 ZERO) = ZERO) ∧
   (∀n. PRE (BIT1 (BIT1 n)) = BIT2 (PRE (BIT1 n))) ∧
   (∀n. PRE (BIT1 (BIT2 n)) = BIT2 (BIT1 n)) ∧ ∀n. PRE (BIT2 n) = BIT1 n
bit_initiality
|- ∀zf b1f b2f.
     ∃f.
       (f ZERO = zf) ∧ (∀n. f (BIT1 n) = b1f n (f n)) ∧
       ∀n. f (BIT2 n) = b2f n (f n)
bit_induction
|- ∀P. P ZERO ∧ (∀n. P n ⇒ P (BIT1 n)) ∧ (∀n. P n ⇒ P (BIT2 n)) ⇒ ∀n. P n
iSUB_THM
|- ∀b n m.
     (numeral$iSUB b ZERO x = ZERO) ∧ (numeral$iSUB T n ZERO = n) ∧
     (numeral$iSUB F (BIT1 n) ZERO = numeral$iDUB n) ∧
     (numeral$iSUB T (BIT1 n) (BIT1 m) = numeral$iDUB (numeral$iSUB T n m)) ∧
     (numeral$iSUB F (BIT1 n) (BIT1 m) = BIT1 (numeral$iSUB F n m)) ∧
     (numeral$iSUB T (BIT1 n) (BIT2 m) = BIT1 (numeral$iSUB F n m)) ∧
     (numeral$iSUB F (BIT1 n) (BIT2 m) = numeral$iDUB (numeral$iSUB F n m)) ∧
     (numeral$iSUB F (BIT2 n) ZERO = BIT1 n) ∧
     (numeral$iSUB T (BIT2 n) (BIT1 m) = BIT1 (numeral$iSUB T n m)) ∧
     (numeral$iSUB F (BIT2 n) (BIT1 m) = numeral$iDUB (numeral$iSUB T n m)) ∧
     (numeral$iSUB T (BIT2 n) (BIT2 m) = numeral$iDUB (numeral$iSUB T n m)) ∧
     (numeral$iSUB F (BIT2 n) (BIT2 m) = BIT1 (numeral$iSUB F n m))
numeral_sub
|- ∀n m. NUMERAL (n − m) = if m < n then NUMERAL (numeral$iSUB T n m) else 0
iDUB_removal
|- ∀n.
     (numeral$iDUB (BIT1 n) = BIT2 (numeral$iDUB n)) ∧
     (numeral$iDUB (BIT2 n) = BIT2 (BIT1 n)) ∧ (numeral$iDUB ZERO = ZERO)
numeral_mult
|- ∀n m.
     (ZERO * n = ZERO) ∧ (n * ZERO = ZERO) ∧
     (BIT1 n * m = numeral$iZ (numeral$iDUB (n * m) + m)) ∧
     (BIT2 n * m = numeral$iDUB (numeral$iZ (n * m + m)))
numeral_exp
|- (∀n. n ** ZERO = BIT1 ZERO) ∧
   (∀n m. n ** BIT1 m = n * numeral$iSQR (n ** m)) ∧
   ∀n m. n ** BIT2 m = numeral$iSQR n * numeral$iSQR (n ** m)
numeral_evenodd
|- ∀n.
     EVEN ZERO ∧ EVEN (BIT2 n) ∧ ¬EVEN (BIT1 n) ∧ ¬ODD ZERO ∧ ¬ODD (BIT2 n) ∧
     ODD (BIT1 n)
numeral_fact
|- (FACT 0 = 1) ∧
   (∀n.
      FACT (NUMERAL (BIT1 n)) =
      NUMERAL (BIT1 n) * FACT (PRE (NUMERAL (BIT1 n)))) ∧
   ∀n. FACT (NUMERAL (BIT2 n)) = NUMERAL (BIT2 n) * FACT (NUMERAL (BIT1 n))
numeral_funpow
|- (FUNPOW f 0 x = x) ∧
   (FUNPOW f (NUMERAL (BIT1 n)) x = FUNPOW f (PRE (NUMERAL (BIT1 n))) (f x)) ∧
   (FUNPOW f (NUMERAL (BIT2 n)) x = FUNPOW f (NUMERAL (BIT1 n)) (f x))
numeral_MIN
|- (MIN 0 x = 0) ∧ (MIN x 0 = 0) ∧
   (MIN (NUMERAL x) (NUMERAL y) = NUMERAL (if x < y then x else y))
numeral_MAX
|- (MAX 0 x = x) ∧ (MAX x 0 = x) ∧
   (MAX (NUMERAL x) (NUMERAL y) = NUMERAL (if x < y then y else x))
divmod_POS
|- ∀n.
     0 < n ⇒
     (DIVMOD (a,m,n) =
      if m < n then (a,m)
      else (let q = findq (1,m,n) in DIVMOD (a + q,m − n * q,n)))
DIVMOD_NUMERAL_CALC
|- (∀m n. m DIV BIT1 n = FST (DIVMOD (ZERO,m,BIT1 n))) ∧
   (∀m n. m DIV BIT2 n = FST (DIVMOD (ZERO,m,BIT2 n))) ∧
   (∀m n. m MOD BIT1 n = SND (DIVMOD (ZERO,m,BIT1 n))) ∧
   ∀m n. m MOD BIT2 n = SND (DIVMOD (ZERO,m,BIT2 n))
numeral_div2
|- (DIV2 0 = 0) ∧ (∀n. DIV2 (NUMERAL (BIT1 n)) = NUMERAL n) ∧
   ∀n. DIV2 (NUMERAL (BIT2 n)) = NUMERAL (SUC n)
texp_help_thm
|- ∀n a. numeral$texp_help n a = (a + 1) * 2 ** (n + 1)
texp_help0
|- numeral$texp_help n 0 = 2 ** (n + 1)
numeral_texp_help
|- (numeral$texp_help ZERO acc = BIT2 acc) ∧
   (numeral$texp_help (BIT1 n) acc =
    numeral$texp_help (PRE (BIT1 n)) (BIT1 acc)) ∧
   (numeral$texp_help (BIT2 n) acc = numeral$texp_help (BIT1 n) (BIT1 acc))
TWO_EXP_THM
|- (2 ** 0 = 1) ∧
   (2 ** NUMERAL (BIT1 n) = NUMERAL (numeral$texp_help (PRE (BIT1 n)) ZERO)) ∧
   (2 ** NUMERAL (BIT2 n) = NUMERAL (numeral$texp_help (BIT1 n) ZERO))
onecount_characterisation
|- ∀n a.
     0 < numeral$onecount n a ∧ 0 < n ⇒
     (n = 2 ** (numeral$onecount n a − a) − 1)
exactlog_characterisation
|- ∀n m. (numeral$exactlog n = BIT1 m) ⇒ (n = 2 ** (m + 1))
DIV2_BIT1
|- DIV2 (BIT1 x) = x
enumeral_mult
|- (ZERO * n = ZERO) ∧ (n * ZERO = ZERO) ∧
   (BIT1 x * BIT1 y = internal_mult (BIT1 x) (BIT1 y)) ∧
   (BIT1 x * BIT2 y =
    (let n = numeral$exactlog (BIT2 y)
     in
       if ODD n then numeral$texp_help (DIV2 n) (PRE (BIT1 x))
       else internal_mult (BIT1 x) (BIT2 y))) ∧
   (BIT2 x * BIT1 y =
    (let m = numeral$exactlog (BIT2 x)
     in
       if ODD m then numeral$texp_help (DIV2 m) (PRE (BIT1 y))
       else internal_mult (BIT2 x) (BIT1 y))) ∧
   (BIT2 x * BIT2 y =
    (let m = numeral$exactlog (BIT2 x) in
     let n = numeral$exactlog (BIT2 y)
     in
       if ODD m then numeral$texp_help (DIV2 m) (PRE (BIT2 y))
       else if ODD n then numeral$texp_help (DIV2 n) (PRE (BIT2 x))
       else internal_mult (BIT2 x) (BIT2 y)))
internal_mult_characterisation
|- ∀n m.
     (internal_mult ZERO n = ZERO) ∧ (internal_mult n ZERO = ZERO) ∧
     (internal_mult (BIT1 n) m =
      numeral$iZ (numeral$iDUB (internal_mult n m) + m)) ∧
     (internal_mult (BIT2 n) m =
      numeral$iDUB (numeral$iZ (internal_mult n m + m)))