Theory "measure"

Parents     extreal

Signature

Constant Type
Borel :(extreal -> bool) # ((extreal -> bool) -> bool)
additive :(α -> bool) # ((α -> bool) -> bool) # ((α -> bool) -> real) -> bool
algebra :(α -> bool) # ((α -> bool) -> bool) -> bool
closed_cdi :(α -> bool) # ((α -> bool) -> bool) -> bool
countably_additive :(α -> bool) # ((α -> bool) -> bool) # ((α -> bool) -> real) -> bool
countably_subadditive :(α -> bool) # ((α -> bool) -> bool) # ((α -> bool) -> real) -> bool
fn_abs :(α -> extreal) -> α -> extreal
fn_minus :(α -> extreal) -> α -> extreal
fn_plus :(α -> extreal) -> α -> extreal
increasing :(α -> bool) # ((α -> bool) -> bool) # ((α -> bool) -> real) -> bool
indicator_fn :(α -> bool) -> α -> extreal
inf_measure :(α -> bool) # ((α -> bool) -> bool) # ((α -> bool) -> real) -> (α -> bool) -> real
lambda_system :(α -> bool) # ((α -> bool) -> bool) -> ((α -> bool) -> real) -> (α -> bool) -> bool
m_space :(α -> bool) # ((α -> bool) -> bool) # ((α -> bool) -> real) -> α -> bool
measurable :(α -> bool) # ((α -> bool) -> bool) -> (β -> bool) # ((β -> bool) -> bool) -> (α -> β) -> bool
measurable_sets :(α -> bool) # ((α -> bool) -> bool) # ((α -> bool) -> real) -> (α -> bool) -> bool
measure :(α -> bool) # ((α -> bool) -> bool) # ((α -> bool) -> real) -> (α -> bool) -> real
measure_preserving :(α -> bool) # ((α -> bool) -> bool) # ((α -> bool) -> real) -> (β -> bool) # ((β -> bool) -> bool) # ((β -> bool) -> real) -> (α -> β) -> bool
measure_space :(α -> bool) # ((α -> bool) -> bool) # ((α -> bool) -> real) -> bool
null_set :(α -> bool) # ((α -> bool) -> bool) # ((α -> bool) -> real) -> (α -> bool) -> bool
outer_measure_space :(α -> bool) # ((α -> bool) -> bool) # ((α -> bool) -> real) -> bool
pos_simple_fn :(α -> bool) # ((α -> bool) -> bool) # ((α -> bool) -> real) -> (α -> extreal) -> (num -> bool) -> (num -> α -> bool) -> (num -> real) -> bool
positive :(α -> bool) # ((α -> bool) -> bool) # ((α -> bool) -> real) -> bool
sigma :(α -> bool) -> ((α -> bool) -> bool) -> (α -> bool) # ((α -> bool) -> bool)
sigma_algebra :(α -> bool) # ((α -> bool) -> bool) -> bool
smallest_closed_cdi :(α -> bool) # ((α -> bool) -> bool) -> (α -> bool) # ((α -> bool) -> bool)
space :(α -> bool) # ((α -> bool) -> bool) -> α -> bool
subadditive :(α -> bool) # ((α -> bool) -> bool) # ((α -> bool) -> real) -> bool
subset_class :(α -> bool) -> ((α -> bool) -> bool) -> bool
subsets :(α -> bool) # ((α -> bool) -> bool) -> (α -> bool) -> bool

Definitions

space_def
|- ∀x y. space (x,y) = x
subsets_def
|- ∀x y. subsets (x,y) = y
subset_class_def
|- ∀sp sts. subset_class sp sts ⇔ ∀x. x ∈ sts ⇒ x ⊆ sp
algebra_def
|- ∀a.
     algebra a ⇔
     subset_class (space a) (subsets a) ∧ ∅ ∈ subsets a ∧
     (∀s. s ∈ subsets a ⇒ space a DIFF s ∈ subsets a) ∧
     ∀s t. s ∈ subsets a ∧ t ∈ subsets a ⇒ s ∪ t ∈ subsets a
sigma_algebra_def
|- ∀a.
     sigma_algebra a ⇔
     algebra a ∧ ∀c. countable c ∧ c ⊆ subsets a ⇒ BIGUNION c ∈ subsets a
sigma_def
|- ∀sp st. sigma sp st = (sp,BIGINTER {s | st ⊆ s ∧ sigma_algebra (sp,s)})
m_space_def
|- ∀sp sts mu. m_space (sp,sts,mu) = sp
measurable_sets_def
|- ∀sp sts mu. measurable_sets (sp,sts,mu) = sts
measure_def
|- ∀sp sts mu. measure (sp,sts,mu) = mu
positive_def
|- ∀m.
     positive m ⇔
     (measure m ∅ = 0) ∧ ∀s. s ∈ measurable_sets m ⇒ 0 ≤ measure m s
additive_def
|- ∀m.
     additive m ⇔
     ∀s t.
       s ∈ measurable_sets m ∧ t ∈ measurable_sets m ∧ DISJOINT s t ⇒
       (measure m (s ∪ t) = measure m s + measure m t)
countably_additive_def
|- ∀m.
     countably_additive m ⇔
     ∀f.
       f ∈ (𝕌(:num) -> measurable_sets m) ∧
       (∀m n. m ≠ n ⇒ DISJOINT (f m) (f n)) ∧
       BIGUNION (IMAGE f 𝕌(:num)) ∈ measurable_sets m ⇒
       measure m o f sums measure m (BIGUNION (IMAGE f 𝕌(:num)))
subadditive_def
|- ∀m.
     subadditive m ⇔
     ∀s t.
       s ∈ measurable_sets m ∧ t ∈ measurable_sets m ⇒
       measure m (s ∪ t) ≤ measure m s + measure m t
countably_subadditive_def
|- ∀m.
     countably_subadditive m ⇔
     ∀f.
       f ∈ (𝕌(:num) -> measurable_sets m) ∧
       BIGUNION (IMAGE f 𝕌(:num)) ∈ measurable_sets m ∧
       summable (measure m o f) ⇒
       measure m (BIGUNION (IMAGE f 𝕌(:num))) ≤ suminf (measure m o f)
increasing_def
|- ∀m.
     increasing m ⇔
     ∀s t.
       s ∈ measurable_sets m ∧ t ∈ measurable_sets m ∧ s ⊆ t ⇒
       measure m s ≤ measure m t
measure_space_def
|- ∀m.
     measure_space m ⇔
     sigma_algebra (m_space m,measurable_sets m) ∧ positive m ∧
     countably_additive m
lambda_system_def
|- ∀gen lam.
     lambda_system gen lam =
     {l |
      l ∈ subsets gen ∧
      ∀s.
        s ∈ subsets gen ⇒
        (lam (l ∩ s) + lam ((space gen DIFF l) ∩ s) = lam s)}
outer_measure_space_def
|- ∀m.
     outer_measure_space m ⇔
     positive m ∧ increasing m ∧ countably_subadditive m
inf_measure_def
|- ∀m s.
     inf_measure m s =
     inf
       {r |
        ∃f.
          f ∈ (𝕌(:num) -> measurable_sets m) ∧
          (∀m n. m ≠ n ⇒ DISJOINT (f m) (f n)) ∧
          s ⊆ BIGUNION (IMAGE f 𝕌(:num)) ∧ measure m o f sums r}
closed_cdi_def
|- ∀p.
     closed_cdi p ⇔
     subset_class (space p) (subsets p) ∧
     (∀s. s ∈ subsets p ⇒ space p DIFF s ∈ subsets p) ∧
     (∀f.
        f ∈ (𝕌(:num) -> subsets p) ∧ (f 0 = ∅) ∧ (∀n. f n ⊆ f (SUC n)) ⇒
        BIGUNION (IMAGE f 𝕌(:num)) ∈ subsets p) ∧
     ∀f.
       f ∈ (𝕌(:num) -> subsets p) ∧ (∀m n. m ≠ n ⇒ DISJOINT (f m) (f n)) ⇒
       BIGUNION (IMAGE f 𝕌(:num)) ∈ subsets p
smallest_closed_cdi_def
|- ∀a.
     smallest_closed_cdi a =
     (space a,BIGINTER {b | subsets a ⊆ b ∧ closed_cdi (space a,b)})
measurable_def
|- ∀a b.
     measurable a b =
     {f |
      sigma_algebra a ∧ sigma_algebra b ∧ f ∈ (space a -> space b) ∧
      ∀s. s ∈ subsets b ⇒ PREIMAGE f s ∩ space a ∈ subsets a}
measure_preserving_def
|- ∀m1 m2.
     measure_preserving m1 m2 =
     {f |
      f ∈
      measurable (m_space m1,measurable_sets m1)
        (m_space m2,measurable_sets m2) ∧ measure_space m1 ∧
      measure_space m2 ∧
      ∀s.
        s ∈ measurable_sets m2 ⇒
        (measure m1 (PREIMAGE f s ∩ m_space m1) = measure m2 s)}
indicator_fn_def
|- ∀s. indicator_fn s = (λx. if x ∈ s then 1 else 0)
pos_simple_fn_def
|- ∀m f s a x.
     pos_simple_fn m f s a x ⇔
     (∀t. 0 ≤ f t) ∧
     (∀t.
        t ∈ m_space m ⇒
        (f t = SIGMA (λi. Normal (x i) * indicator_fn (a i) t) s)) ∧
     (∀i. i ∈ s ⇒ a i ∈ measurable_sets m) ∧ FINITE s ∧
     (∀i. i ∈ s ⇒ 0 ≤ x i) ∧
     (∀i j. i ∈ s ∧ j ∈ s ∧ i ≠ j ⇒ DISJOINT (a i) (a j)) ∧
     (BIGUNION (IMAGE a s) = m_space m)
null_set_def
|- ∀m s. null_set m s ⇔ s ∈ measurable_sets m ∧ (measure m s = 0)
Borel_def
|- Borel = sigma 𝕌(:extreal) (IMAGE (λa. {x | x < a}) 𝕌(:extreal))
fn_plus_def
|- ∀f. fn_plus f = (λx. if 0 < f x then f x else 0)
fn_minus_def
|- ∀f. fn_minus f = (λx. if f x < 0 then -f x else 0)
fn_abs_def
|- ∀f. fn_abs f = (λx. abs (f x))


Theorems

SIGMA_PROPERTY_DISJOINT_LEMMA
|- ∀sp a p.
     algebra (sp,a) ∧ a ⊆ p ∧ closed_cdi (sp,p) ⇒ subsets (sigma sp a) ⊆ p
SIGMA_PROPERTY_DISJOINT_LEMMA2
|- ∀a.
     algebra a ⇒
     ∀s t.
       s ∈ subsets (smallest_closed_cdi a) ∧
       t ∈ subsets (smallest_closed_cdi a) ⇒
       s ∩ t ∈ subsets (smallest_closed_cdi a)
SIGMA_PROPERTY_DISJOINT_LEMMA1
|- ∀a.
     algebra a ⇒
     ∀s t.
       s ∈ subsets a ∧ t ∈ subsets (smallest_closed_cdi a) ⇒
       s ∩ t ∈ subsets (smallest_closed_cdi a)
CLOSED_CDI_INCREASING
|- ∀p f.
     closed_cdi p ∧ f ∈ (𝕌(:num) -> subsets p) ∧ (f 0 = ∅) ∧
     (∀n. f n ⊆ f (SUC n)) ⇒
     BIGUNION (IMAGE f 𝕌(:num)) ∈ subsets p
CLOSED_CDI_DISJOINT
|- ∀p f.
     closed_cdi p ∧ f ∈ (𝕌(:num) -> subsets p) ∧
     (∀m n. m ≠ n ⇒ DISJOINT (f m) (f n)) ⇒
     BIGUNION (IMAGE f 𝕌(:num)) ∈ subsets p
CLOSED_CDI_COMPL
|- ∀p s. closed_cdi p ∧ s ∈ subsets p ⇒ space p DIFF s ∈ subsets p
CLOSED_CDI_DUNION
|- ∀p s t.
     ∅ ∈ subsets p ∧ closed_cdi p ∧ s ∈ subsets p ∧ t ∈ subsets p ∧
     DISJOINT s t ⇒
     s ∪ t ∈ subsets p
SMALLEST_CLOSED_CDI
|- ∀a.
     algebra a ⇒
     subsets a ⊆ subsets (smallest_closed_cdi a) ∧
     closed_cdi (smallest_closed_cdi a) ∧
     subset_class (space a) (subsets (smallest_closed_cdi a))
SPACE_SMALLEST_CLOSED_CDI
|- ∀a. space (smallest_closed_cdi a) = space a
SPACE
|- ∀a. (space a,subsets a) = a
ALGEBRA_ALT_INTER
|- ∀a.
     algebra a ⇔
     subset_class (space a) (subsets a) ∧ ∅ ∈ subsets a ∧
     (∀s. s ∈ subsets a ⇒ space a DIFF s ∈ subsets a) ∧
     ∀s t. s ∈ subsets a ∧ t ∈ subsets a ⇒ s ∩ t ∈ subsets a
ALGEBRA_EMPTY
|- ∀a. algebra a ⇒ ∅ ∈ subsets a
ALGEBRA_SPACE
|- ∀a. algebra a ⇒ space a ∈ subsets a
ALGEBRA_COMPL
|- ∀a s. algebra a ∧ s ∈ subsets a ⇒ space a DIFF s ∈ subsets a
ALGEBRA_UNION
|- ∀a s t. algebra a ∧ s ∈ subsets a ∧ t ∈ subsets a ⇒ s ∪ t ∈ subsets a
ALGEBRA_INTER
|- ∀a s t. algebra a ∧ s ∈ subsets a ∧ t ∈ subsets a ⇒ s ∩ t ∈ subsets a
ALGEBRA_DIFF
|- ∀a s t. algebra a ∧ s ∈ subsets a ∧ t ∈ subsets a ⇒ s DIFF t ∈ subsets a
ALGEBRA_FINITE_UNION
|- ∀a c. algebra a ∧ FINITE c ∧ c ⊆ subsets a ⇒ BIGUNION c ∈ subsets a
ALGEBRA_INTER_SPACE
|- ∀a s. algebra a ∧ s ∈ subsets a ⇒ (space a ∩ s = s) ∧ (s ∩ space a = s)
LAMBDA_SYSTEM_EMPTY
|- ∀g0 lam.
     algebra g0 ∧ positive (space g0,subsets g0,lam) ⇒
     ∅ ∈ lambda_system g0 lam
LAMBDA_SYSTEM_COMPL
|- ∀g0 lam l.
     algebra g0 ∧ positive (space g0,subsets g0,lam) ∧
     l ∈ lambda_system g0 lam ⇒
     space g0 DIFF l ∈ lambda_system g0 lam
LAMBDA_SYSTEM_INTER
|- ∀g0 lam l1 l2.
     algebra g0 ∧ positive (space g0,subsets g0,lam) ∧
     l1 ∈ lambda_system g0 lam ∧ l2 ∈ lambda_system g0 lam ⇒
     l1 ∩ l2 ∈ lambda_system g0 lam
LAMBDA_SYSTEM_ALGEBRA
|- ∀g0 lam.
     algebra g0 ∧ positive (space g0,subsets g0,lam) ⇒
     algebra (space g0,lambda_system g0 lam)
LAMBDA_SYSTEM_STRONG_ADDITIVE
|- ∀g0 lam g l1 l2.
     algebra g0 ∧ positive (space g0,subsets g0,lam) ∧ g ∈ subsets g0 ∧
     DISJOINT l1 l2 ∧ l1 ∈ lambda_system g0 lam ∧ l2 ∈ lambda_system g0 lam ⇒
     (lam ((l1 ∪ l2) ∩ g) = lam (l1 ∩ g) + lam (l2 ∩ g))
LAMBDA_SYSTEM_ADDITIVE
|- ∀g0 lam l1 l2.
     algebra g0 ∧ positive (space g0,subsets g0,lam) ⇒
     additive (space g0,lambda_system g0 lam,lam)
COUNTABLY_SUBADDITIVE_SUBADDITIVE
|- ∀m.
     algebra (m_space m,measurable_sets m) ∧ positive m ∧
     countably_subadditive m ⇒
     subadditive m
SIGMA_ALGEBRA_ALT
|- ∀a.
     sigma_algebra a ⇔
     algebra a ∧
     ∀f. f ∈ (𝕌(:num) -> subsets a) ⇒ BIGUNION (IMAGE f 𝕌(:num)) ∈ subsets a
SIGMA_ALGEBRA_ALT_MONO
|- ∀a.
     sigma_algebra a ⇔
     algebra a ∧
     ∀f.
       f ∈ (𝕌(:num) -> subsets a) ∧ (f 0 = ∅) ∧ (∀n. f n ⊆ f (SUC n)) ⇒
       BIGUNION (IMAGE f 𝕌(:num)) ∈ subsets a
SIGMA_ALGEBRA_ALT_DISJOINT
|- ∀a.
     sigma_algebra a ⇔
     algebra a ∧
     ∀f.
       f ∈ (𝕌(:num) -> subsets a) ∧ (∀m n. m ≠ n ⇒ DISJOINT (f m) (f n)) ⇒
       BIGUNION (IMAGE f 𝕌(:num)) ∈ subsets a
SUBADDITIVE
|- ∀m s t u.
     subadditive m ∧ s ∈ measurable_sets m ∧ t ∈ measurable_sets m ∧
     (u = s ∪ t) ⇒
     measure m u ≤ measure m s + measure m t
ADDITIVE
|- ∀m s t u.
     additive m ∧ s ∈ measurable_sets m ∧ t ∈ measurable_sets m ∧
     DISJOINT s t ∧ (u = s ∪ t) ⇒
     (measure m u = measure m s + measure m t)
COUNTABLY_SUBADDITIVE
|- ∀m f s.
     countably_subadditive m ∧ f ∈ (𝕌(:num) -> measurable_sets m) ∧
     summable (measure m o f) ∧ (s = BIGUNION (IMAGE f 𝕌(:num))) ∧
     s ∈ measurable_sets m ⇒
     measure m s ≤ suminf (measure m o f)
ADDITIVE_SUM
|- ∀m f n.
     algebra (m_space m,measurable_sets m) ∧ positive m ∧ additive m ∧
     f ∈ (𝕌(:num) -> measurable_sets m) ∧
     (∀m n. m ≠ n ⇒ DISJOINT (f m) (f n)) ⇒
     (sum (0,n) (measure m o f) = measure m (BIGUNION (IMAGE f (count n))))
INCREASING_ADDITIVE_SUMMABLE
|- ∀m f.
     algebra (m_space m,measurable_sets m) ∧ positive m ∧ increasing m ∧
     additive m ∧ f ∈ (𝕌(:num) -> measurable_sets m) ∧
     (∀m n. m ≠ n ⇒ DISJOINT (f m) (f n)) ⇒
     summable (measure m o f)
LAMBDA_SYSTEM_POSITIVE
|- ∀g0 lam.
     positive (space g0,subsets g0,lam) ⇒
     positive (space g0,lambda_system g0 lam,lam)
LAMBDA_SYSTEM_INCREASING
|- ∀g0 lam.
     increasing (space g0,subsets g0,lam) ⇒
     increasing (space g0,lambda_system g0 lam,lam)
LAMBDA_SYSTEM_STRONG_SUM
|- ∀g0 lam g f n.
     algebra g0 ∧ positive (space g0,subsets g0,lam) ∧ g ∈ subsets g0 ∧
     f ∈ (𝕌(:num) -> lambda_system g0 lam) ∧
     (∀m n. m ≠ n ⇒ DISJOINT (f m) (f n)) ⇒
     (sum (0,n) (lam o (λs. s ∩ g) o f) =
      lam (BIGUNION (IMAGE f (count n)) ∩ g))
SIGMA_ALGEBRA_ALGEBRA
|- ∀a. sigma_algebra a ⇒ algebra a
OUTER_MEASURE_SPACE_POSITIVE
|- ∀m. outer_measure_space m ⇒ positive m
LAMBDA_SYSTEM_CARATHEODORY
|- ∀gsig lam.
     sigma_algebra gsig ∧ outer_measure_space (space gsig,subsets gsig,lam) ⇒
     ∀f.
       f ∈ (𝕌(:num) -> lambda_system gsig lam) ∧
       (∀m n. m ≠ n ⇒ DISJOINT (f m) (f n)) ⇒
       BIGUNION (IMAGE f 𝕌(:num)) ∈ lambda_system gsig lam ∧
       lam o f sums lam (BIGUNION (IMAGE f 𝕌(:num)))
CARATHEODORY_LEMMA
|- ∀gsig lam.
     sigma_algebra gsig ∧ outer_measure_space (space gsig,subsets gsig,lam) ⇒
     measure_space (space gsig,lambda_system gsig lam,lam)
INF_MEASURE_NONEMPTY
|- ∀m g s.
     algebra (m_space m,measurable_sets m) ∧ positive m ∧
     s ∈ measurable_sets m ∧ g ⊆ s ⇒
     measure m s ∈
     {r |
      ∃f.
        f ∈ (𝕌(:num) -> measurable_sets m) ∧
        (∀m n. m ≠ n ⇒ DISJOINT (f m) (f n)) ∧
        g ⊆ BIGUNION (IMAGE f 𝕌(:num)) ∧ measure m o f sums r}
INF_MEASURE_POS0
|- ∀m g x.
     algebra (m_space m,measurable_sets m) ∧ positive m ∧
     x ∈
     {r |
      ∃f.
        f ∈ (𝕌(:num) -> measurable_sets m) ∧
        (∀m n. m ≠ n ⇒ DISJOINT (f m) (f n)) ∧
        g ⊆ BIGUNION (IMAGE f 𝕌(:num)) ∧ measure m o f sums r} ⇒
     0 ≤ x
INF_MEASURE_POS
|- ∀m g.
     algebra (m_space m,measurable_sets m) ∧ positive m ∧ g ⊆ m_space m ⇒
     0 ≤ inf_measure m g
INCREASING
|- ∀m s t.
     increasing m ∧ s ⊆ t ∧ s ∈ measurable_sets m ∧ t ∈ measurable_sets m ⇒
     measure m s ≤ measure m t
ADDITIVE_INCREASING
|- ∀m.
     algebra (m_space m,measurable_sets m) ∧ positive m ∧ additive m ⇒
     increasing m
COUNTABLY_ADDITIVE_ADDITIVE
|- ∀m.
     algebra (m_space m,measurable_sets m) ∧ positive m ∧
     countably_additive m ⇒
     additive m
COUNTABLY_ADDITIVE
|- ∀m s f.
     countably_additive m ∧ f ∈ (𝕌(:num) -> measurable_sets m) ∧
     (∀m n. m ≠ n ⇒ DISJOINT (f m) (f n)) ∧ (s = BIGUNION (IMAGE f 𝕌(:num))) ∧
     s ∈ measurable_sets m ⇒
     measure m o f sums measure m s
INF_MEASURE_AGREES
|- ∀m s.
     algebra (m_space m,measurable_sets m) ∧ positive m ∧
     countably_additive m ∧ s ∈ measurable_sets m ⇒
     (inf_measure m s = measure m s)
MEASURE_DOWN
|- ∀m0 m1.
     sigma_algebra (m_space m0,measurable_sets m0) ∧
     measurable_sets m0 ⊆ measurable_sets m1 ∧ (measure m0 = measure m1) ∧
     measure_space m1 ⇒
     measure_space m0
SIGMA_ALGEBRA_SIGMA
|- ∀sp sts. subset_class sp sts ⇒ sigma_algebra (sigma sp sts)
POW_ALGEBRA
|- algebra (sp,POW sp)
POW_SIGMA_ALGEBRA
|- sigma_algebra (sp,POW sp)
UNIV_SIGMA_ALGEBRA
|- sigma_algebra (𝕌(:α),𝕌(:α -> bool))
INF_MEASURE_EMPTY
|- ∀m.
     algebra (m_space m,measurable_sets m) ∧ positive m ⇒
     (inf_measure m ∅ = 0)
INF_MEASURE_POSITIVE
|- ∀m.
     algebra (m_space m,measurable_sets m) ∧ positive m ⇒
     positive (m_space m,POW (m_space m),inf_measure m)
INF_MEASURE_INCREASING
|- ∀m.
     algebra (m_space m,measurable_sets m) ∧ positive m ⇒
     increasing (m_space m,POW (m_space m),inf_measure m)
INF_MEASURE_LE
|- ∀m s x.
     algebra (m_space m,measurable_sets m) ∧ positive m ∧ increasing m ∧
     x ∈
     {r |
      ∃f.
        f ∈ (𝕌(:num) -> measurable_sets m) ∧ s ⊆ BIGUNION (IMAGE f 𝕌(:num)) ∧
        measure m o f sums r} ⇒
     inf_measure m s ≤ x
INF_MEASURE_CLOSE
|- ∀m s e.
     algebra (m_space m,measurable_sets m) ∧ positive m ∧ 0 < e ∧
     s ⊆ m_space m ⇒
     ∃f l.
       f ∈ (𝕌(:num) -> measurable_sets m) ∧ s ⊆ BIGUNION (IMAGE f 𝕌(:num)) ∧
       (∀m n. m ≠ n ⇒ DISJOINT (f m) (f n)) ∧ measure m o f sums l ∧
       l ≤ inf_measure m s + e
INF_MEASURE_COUNTABLY_SUBADDITIVE
|- ∀m.
     algebra (m_space m,measurable_sets m) ∧ positive m ∧ increasing m ⇒
     countably_subadditive (m_space m,POW (m_space m),inf_measure m)
INF_MEASURE_OUTER
|- ∀m.
     algebra (m_space m,measurable_sets m) ∧ positive m ∧ increasing m ⇒
     outer_measure_space (m_space m,POW (m_space m),inf_measure m)
SIGMA_SUBSET
|- ∀a b.
     sigma_algebra b ∧ a ⊆ subsets b ⇒ subsets (sigma (space b) a) ⊆ subsets b
ALGEBRA_SUBSET_LAMBDA_SYSTEM
|- ∀m.
     algebra (m_space m,measurable_sets m) ∧ positive m ∧ increasing m ∧
     additive m ⇒
     measurable_sets m ⊆
     lambda_system (m_space m,POW (m_space m)) (inf_measure m)
CARATHEODORY
|- ∀m0.
     algebra (m_space m0,measurable_sets m0) ∧ positive m0 ∧
     countably_additive m0 ⇒
     ∃m.
       (∀s. s ∈ measurable_sets m0 ⇒ (measure m s = measure m0 s)) ∧
       ((m_space m,measurable_sets m) =
        sigma (m_space m0) (measurable_sets m0)) ∧ measure_space m
SIGMA_SUBSET_SUBSETS
|- ∀sp a. a ⊆ subsets (sigma sp a)
IN_SIGMA
|- ∀sp a x. x ∈ a ⇒ x ∈ subsets (sigma sp a)
SIGMA_ALGEBRA
|- ∀p.
     sigma_algebra p ⇔
     subset_class (space p) (subsets p) ∧ ∅ ∈ subsets p ∧
     (∀s. s ∈ subsets p ⇒ space p DIFF s ∈ subsets p) ∧
     ∀c. countable c ∧ c ⊆ subsets p ⇒ BIGUNION c ∈ subsets p
SIGMA_ALGEBRA_COUNTABLE_UNION
|- ∀a c.
     sigma_algebra a ∧ countable c ∧ c ⊆ subsets a ⇒ BIGUNION c ∈ subsets a
SIGMA_ALGEBRA_ENUM
|- ∀a f.
     sigma_algebra a ∧ f ∈ (𝕌(:num) -> subsets a) ⇒
     BIGUNION (IMAGE f 𝕌(:num)) ∈ subsets a
MEASURE_COMPL
|- ∀m s.
     measure_space m ∧ s ∈ measurable_sets m ⇒
     (measure m (m_space m DIFF s) = measure m (m_space m) − measure m s)
SIGMA_PROPERTY
|- ∀sp p a.
     subset_class sp p ∧ ∅ ∈ p ∧ a ⊆ p ∧
     (∀s. s ∈ p ∩ subsets (sigma sp a) ⇒ sp DIFF s ∈ p) ∧
     (∀c. countable c ∧ c ⊆ p ∩ subsets (sigma sp a) ⇒ BIGUNION c ∈ p) ⇒
     subsets (sigma sp a) ⊆ p
MEASURE_EMPTY
|- ∀m. measure_space m ⇒ (measure m ∅ = 0)
SIGMA_SUBSET_MEASURABLE_SETS
|- ∀a m.
     measure_space m ∧ a ⊆ measurable_sets m ⇒
     subsets (sigma (m_space m) a) ⊆ measurable_sets m
SIGMA_ALGEBRA_FN
|- ∀a.
     sigma_algebra a ⇔
     subset_class (space a) (subsets a) ∧ ∅ ∈ subsets a ∧
     (∀s. s ∈ subsets a ⇒ space a DIFF s ∈ subsets a) ∧
     ∀f. f ∈ (𝕌(:num) -> subsets a) ⇒ BIGUNION (IMAGE f 𝕌(:num)) ∈ subsets a
SIGMA_ALGEBRA_FN_DISJOINT
|- ∀a.
     sigma_algebra a ⇔
     subset_class (space a) (subsets a) ∧ ∅ ∈ subsets a ∧
     (∀s. s ∈ subsets a ⇒ space a DIFF s ∈ subsets a) ∧
     (∀s t. s ∈ subsets a ∧ t ∈ subsets a ⇒ s ∪ t ∈ subsets a) ∧
     ∀f.
       f ∈ (𝕌(:num) -> subsets a) ∧ (∀m n. m ≠ n ⇒ DISJOINT (f m) (f n)) ⇒
       BIGUNION (IMAGE f 𝕌(:num)) ∈ subsets a
SIGMA_PROPERTY_ALT
|- ∀sp p a.
     subset_class sp p ∧ ∅ ∈ p ∧ a ⊆ p ∧
     (∀s. s ∈ p ∩ subsets (sigma sp a) ⇒ sp DIFF s ∈ p) ∧
     (∀f.
        f ∈ (𝕌(:num) -> p ∩ subsets (sigma sp a)) ⇒
        BIGUNION (IMAGE f 𝕌(:num)) ∈ p) ⇒
     subsets (sigma sp a) ⊆ p
SIGMA_PROPERTY_DISJOINT_WEAK
|- ∀sp p a.
     algebra (sp,a) ∧ a ⊆ p ∧ subset_class sp p ∧
     (∀s. s ∈ p ⇒ sp DIFF s ∈ p) ∧
     (∀f.
        f ∈ (𝕌(:num) -> p) ∧ (f 0 = ∅) ∧ (∀n. f n ⊆ f (SUC n)) ⇒
        BIGUNION (IMAGE f 𝕌(:num)) ∈ p) ∧
     (∀f.
        f ∈ (𝕌(:num) -> p) ∧ (∀m n. m ≠ n ⇒ DISJOINT (f m) (f n)) ⇒
        BIGUNION (IMAGE f 𝕌(:num)) ∈ p) ⇒
     subsets (sigma sp a) ⊆ p
SIGMA_PROPERTY_DISJOINT
|- ∀sp p a.
     algebra (sp,a) ∧ a ⊆ p ∧
     (∀s. s ∈ p ∩ subsets (sigma sp a) ⇒ sp DIFF s ∈ p) ∧
     (∀f.
        f ∈ (𝕌(:num) -> p ∩ subsets (sigma sp a)) ∧ (f 0 = ∅) ∧
        (∀n. f n ⊆ f (SUC n)) ⇒
        BIGUNION (IMAGE f 𝕌(:num)) ∈ p) ∧
     (∀f.
        f ∈ (𝕌(:num) -> p ∩ subsets (sigma sp a)) ∧
        (∀m n. m ≠ n ⇒ DISJOINT (f m) (f n)) ⇒
        BIGUNION (IMAGE f 𝕌(:num)) ∈ p) ⇒
     subsets (sigma sp a) ⊆ p
MEASURE_COUNTABLY_ADDITIVE
|- ∀m s f.
     measure_space m ∧ f ∈ (𝕌(:num) -> measurable_sets m) ∧
     (∀m n. m ≠ n ⇒ DISJOINT (f m) (f n)) ∧ (s = BIGUNION (IMAGE f 𝕌(:num))) ⇒
     measure m o f sums measure m s
MEASURE_SPACE_ADDITIVE
|- ∀m. measure_space m ⇒ additive m
MEASURE_ADDITIVE
|- ∀m s t u.
     measure_space m ∧ s ∈ measurable_sets m ∧ t ∈ measurable_sets m ∧
     DISJOINT s t ∧ (u = s ∪ t) ⇒
     (measure m u = measure m s + measure m t)
MEASURE_COUNTABLE_INCREASING
|- ∀m s f.
     measure_space m ∧ f ∈ (𝕌(:num) -> measurable_sets m) ∧ (f 0 = ∅) ∧
     (∀n. f n ⊆ f (SUC n)) ∧ (s = BIGUNION (IMAGE f 𝕌(:num))) ⇒
     measure m o f --> measure m s
MEASURE_SPACE_REDUCE
|- ∀m. (m_space m,measurable_sets m,measure m) = m
SPACE_SIGMA
|- ∀sp a. space (sigma sp a) = sp
MONOTONE_CONVERGENCE
|- ∀m s f.
     measure_space m ∧ f ∈ (𝕌(:num) -> measurable_sets m) ∧
     (∀n. f n ⊆ f (SUC n)) ∧ (s = BIGUNION (IMAGE f 𝕌(:num))) ⇒
     measure m o f --> measure m s
SIGMA_REDUCE
|- ∀sp a. (sp,subsets (sigma sp a)) = sigma sp a
MEASURABLE_SETS_SUBSET_SPACE
|- ∀m s. measure_space m ∧ s ∈ measurable_sets m ⇒ s ⊆ m_space m
MEASURABLE_DIFF_PROPERTY
|- ∀a b f.
     sigma_algebra a ∧ sigma_algebra b ∧ f ∈ (space a -> space b) ∧
     (∀s. s ∈ subsets b ⇒ PREIMAGE f s ∈ subsets a) ⇒
     ∀s.
       s ∈ subsets b ⇒
       (PREIMAGE f (space b DIFF s) = space a DIFF PREIMAGE f s)
MEASURABLE_BIGUNION_PROPERTY
|- ∀a b f.
     sigma_algebra a ∧ sigma_algebra b ∧ f ∈ (space a -> space b) ∧
     (∀s. s ∈ subsets b ⇒ PREIMAGE f s ∈ subsets a) ⇒
     ∀c.
       c ⊆ subsets b ⇒
       (PREIMAGE f (BIGUNION c) = BIGUNION (IMAGE (PREIMAGE f) c))
MEASUBABLE_BIGUNION_LEMMA
|- ∀a b f.
     sigma_algebra a ∧ sigma_algebra b ∧ f ∈ (space a -> space b) ∧
     (∀s. s ∈ subsets b ⇒ PREIMAGE f s ∈ subsets a) ⇒
     ∀c.
       countable c ∧ c ⊆ IMAGE (PREIMAGE f) (subsets b) ⇒
       BIGUNION c ∈ IMAGE (PREIMAGE f) (subsets b)
MEASURABLE_SIGMA_PREIMAGES
|- ∀a b f.
     sigma_algebra a ∧ sigma_algebra b ∧ f ∈ (space a -> space b) ∧
     (∀s. s ∈ subsets b ⇒ PREIMAGE f s ∈ subsets a) ⇒
     sigma_algebra (space a,IMAGE (PREIMAGE f) (subsets b))
IN_MEASURABLE
|- ∀a b f.
     f ∈ measurable a b ⇔
     sigma_algebra a ∧ sigma_algebra b ∧ f ∈ (space a -> space b) ∧
     ∀s. s ∈ subsets b ⇒ PREIMAGE f s ∩ space a ∈ subsets a
MEASURABLE_SIGMA
|- ∀f a b sp.
     sigma_algebra a ∧ subset_class sp b ∧ f ∈ (space a -> sp) ∧
     (∀s. s ∈ b ⇒ PREIMAGE f s ∩ space a ∈ subsets a) ⇒
     f ∈ measurable a (sigma sp b)
MEASURABLE_SUBSET
|- ∀a b. measurable a b ⊆ measurable a (sigma (space b) (subsets b))
MEASURABLE_LIFT
|- ∀f a b. f ∈ measurable a b ⇒ f ∈ measurable a (sigma (space b) (subsets b))
IN_MEASURE_PRESERVING
|- ∀m1 m2 f.
     f ∈ measure_preserving m1 m2 ⇔
     f ∈
     measurable (m_space m1,measurable_sets m1)
       (m_space m2,measurable_sets m2) ∧ measure_space m1 ∧ measure_space m2 ∧
     ∀s.
       s ∈ measurable_sets m2 ⇒
       (measure m1 (PREIMAGE f s ∩ m_space m1) = measure m2 s)
MEASURE_PRESERVING_LIFT
|- ∀m1 m2 a f.
     measure_space m1 ∧ measure_space m2 ∧
     (measurable_sets m2 = subsets (sigma (m_space m2) a)) ∧
     f ∈ measure_preserving m1 (m_space m2,a,measure m2) ⇒
     f ∈ measure_preserving m1 m2
MEASURE_PRESERVING_SUBSET
|- ∀m1 m2 a.
     measure_space m1 ∧ measure_space m2 ∧
     (measurable_sets m2 = subsets (sigma (m_space m2) a)) ⇒
     measure_preserving m1 (m_space m2,a,measure m2) ⊆
     measure_preserving m1 m2
MEASURABLE_I
|- ∀a. sigma_algebra a ⇒ I ∈ measurable a a
MEASURABLE_COMP
|- ∀f g a b c.
     f ∈ measurable a b ∧ g ∈ measurable b c ⇒ g o f ∈ measurable a c
MEASURABLE_COMP_STRONG
|- ∀f g a b c.
     f ∈ measurable a b ∧ sigma_algebra c ∧ g ∈ (space b -> space c) ∧
     (∀x. x ∈ subsets c ⇒ PREIMAGE g x ∩ IMAGE f (space a) ∈ subsets b) ⇒
     g o f ∈ measurable a c
MEASURABLE_COMP_STRONGER
|- ∀f g a b c t.
     f ∈ measurable a b ∧ sigma_algebra c ∧ g ∈ (space b -> space c) ∧
     IMAGE f (space a) ⊆ t ∧
     (∀s. s ∈ subsets c ⇒ PREIMAGE g s ∩ t ∈ subsets b) ⇒
     g o f ∈ measurable a c
MEASURABLE_UP_LIFT
|- ∀sp a b c f.
     f ∈ measurable (sp,a) c ∧ sigma_algebra (sp,b) ∧ a ⊆ b ⇒
     f ∈ measurable (sp,b) c
MEASURABLE_UP_SUBSET
|- ∀sp a b c.
     a ⊆ b ∧ sigma_algebra (sp,b) ⇒ measurable (sp,a) c ⊆ measurable (sp,b) c
MEASURABLE_UP_SIGMA
|- ∀a b. measurable a b ⊆ measurable (sigma (space a) (subsets a)) b
MEASURE_PRESERVING_UP_LIFT
|- ∀m1 m2 f.
     measure_space m1 ∧ f ∈ measure_preserving (m_space m1,a,measure m1) m2 ∧
     sigma_algebra (m_space m1,measurable_sets m1) ∧ a ⊆ measurable_sets m1 ⇒
     f ∈ measure_preserving m1 m2
MEASURE_PRESERVING_UP_SUBSET
|- ∀m1 m2.
     measure_space m1 ∧ a ⊆ measurable_sets m1 ∧
     sigma_algebra (m_space m1,measurable_sets m1) ⇒
     measure_preserving (m_space m1,a,measure m1) m2 ⊆
     measure_preserving m1 m2
MEASURE_PRESERVING_UP_SIGMA
|- ∀m1 m2 a.
     measure_space m1 ∧
     (measurable_sets m1 = subsets (sigma (m_space m1) a)) ⇒
     measure_preserving (m_space m1,a,measure m1) m2 ⊆
     measure_preserving m1 m2
MEASURABLE_PROD_SIGMA
|- ∀a a1 a2 f.
     sigma_algebra a ∧ FST o f ∈ measurable a a1 ∧ SND o f ∈ measurable a a2 ⇒
     f ∈
     measurable a
       (sigma (space a1 × space a2) (prod_sets (subsets a1) (subsets a2)))
MEASURABLE_RANGE_REDUCE
|- ∀m f s.
     measure_space m ∧
     f ∈ measurable (m_space m,measurable_sets m) (s,POW s) ∧ s ≠ ∅ ⇒
     f ∈
     measurable (m_space m,measurable_sets m)
       (s ∩ IMAGE f (m_space m),POW (s ∩ IMAGE f (m_space m)))
MEASURABLE_POW_TO_POW
|- ∀m f.
     measure_space m ∧ (measurable_sets m = POW (m_space m)) ⇒
     f ∈ measurable (m_space m,measurable_sets m) (𝕌(:β),POW 𝕌(:β))
MEASURABLE_POW_TO_POW_IMAGE
|- ∀m f.
     measure_space m ∧ (measurable_sets m = POW (m_space m)) ⇒
     f ∈
     measurable (m_space m,measurable_sets m)
       (IMAGE f (m_space m),POW (IMAGE f (m_space m)))
MEASURE_SPACE_SUBSET
|- ∀s s' m. s' ⊆ s ∧ measure_space (s,POW s,m) ⇒ measure_space (s',POW s',m)
STRONG_MEASURE_SPACE_SUBSET
|- ∀s s'.
     s' ⊆ m_space s ∧ measure_space s ∧ POW s' ⊆ measurable_sets s ⇒
     measure_space (s',POW s',measure s)
MEASURE_REAL_SUM_IMAGE
|- ∀m s.
     measure_space m ∧ s ∈ measurable_sets m ∧
     (∀x. x ∈ s ⇒ {x} ∈ measurable_sets m) ∧ FINITE s ⇒
     (measure m s = SIGMA (λx. measure m {x}) s)
SIGMA_POW
|- ∀s. sigma s (POW s) = (s,POW s)
finite_additivity_sufficient_for_finite_spaces
|- ∀s m.
     sigma_algebra s ∧ FINITE (space s) ∧ positive (space s,subsets s,m) ∧
     additive (space s,subsets s,m) ⇒
     measure_space (space s,subsets s,m)
finite_additivity_sufficient_for_finite_spaces2
|- ∀m.
     sigma_algebra (m_space m,measurable_sets m) ∧ FINITE (m_space m) ∧
     positive m ∧ additive m ⇒
     measure_space m
IMAGE_SING
|- ∀f x. IMAGE f {x} = {f x}
SUBSET_BIGINTER
|- ∀X P. X ⊆ BIGINTER P ⇔ ∀Y. Y ∈ P ⇒ X ⊆ Y
MEASURE_SPACE_INCREASING
|- ∀m. measure_space m ⇒ increasing m
MEASURE_SPACE_POSITIVE
|- ∀m. measure_space m ⇒ positive m
MEASURE_SPACE_INTER
|- ∀m s t.
     measure_space m ∧ s ∈ measurable_sets m ∧ t ∈ measurable_sets m ⇒
     s ∩ t ∈ measurable_sets m
MEASURE_SPACE_UNION
|- ∀m s t.
     measure_space m ∧ s ∈ measurable_sets m ∧ t ∈ measurable_sets m ⇒
     s ∪ t ∈ measurable_sets m
MEASURE_SPACE_DIFF
|- ∀m s t.
     measure_space m ∧ s ∈ measurable_sets m ∧ t ∈ measurable_sets m ⇒
     s DIFF t ∈ measurable_sets m
MEASURE_COMPL_SUBSET
|- ∀m s.
     measure_space m ∧ s ∈ measurable_sets m ∧ t ∈ measurable_sets m ∧ t ⊆ s ⇒
     (measure m (s DIFF t) = measure m s − measure m t)
MEASURE_SPACE_BIGUNION
|- ∀m s.
     measure_space m ∧ (∀n. s n ∈ measurable_sets m) ⇒
     BIGUNION (IMAGE s 𝕌(:num)) ∈ measurable_sets m
MEASURE_SPACE_IN_MSPACE
|- ∀m A. measure_space m ∧ A ∈ measurable_sets m ⇒ ∀x. x ∈ A ⇒ x ∈ m_space m
MEASURE_SPACE_SUBSET_MSPACE
|- ∀A m. measure_space m ∧ A ∈ measurable_sets m ⇒ A ⊆ m_space m
MEASURE_SPACE_EMPTY_MEASURABLE
|- ∀m. measure_space m ⇒ ∅ ∈ measurable_sets m
MEASURE_SPACE_MSPACE_MEASURABLE
|- ∀m. measure_space m ⇒ m_space m ∈ measurable_sets m
SIGMA_ALGEBRA_FN_BIGINTER
|- ∀a.
     sigma_algebra a ⇒
     subset_class (space a) (subsets a) ∧ ∅ ∈ subsets a ∧
     (∀s. s ∈ subsets a ⇒ space a DIFF s ∈ subsets a) ∧
     ∀f. f ∈ (𝕌(:num) -> subsets a) ⇒ BIGINTER (IMAGE f 𝕌(:num)) ∈ subsets a
MEASURE_SPACE_BIGINTER
|- ∀m s.
     measure_space m ∧ (∀n. s n ∈ measurable_sets m) ⇒
     BIGINTER (IMAGE s 𝕌(:num)) ∈ measurable_sets m
MONOTONE_CONVERGENCE2
|- ∀m f.
     measure_space m ∧ f ∈ (𝕌(:num) -> measurable_sets m) ∧
     (∀n. f n ⊆ f (SUC n)) ⇒
     measure m o f --> measure m (BIGUNION (IMAGE f 𝕌(:num)))
MONOTONE_CONVERGENCE_BIGINTER
|- ∀m s f.
     measure_space m ∧ f ∈ (𝕌(:num) -> measurable_sets m) ∧
     (∀n. f (SUC n) ⊆ f n) ∧ (s = BIGINTER (IMAGE f 𝕌(:num))) ⇒
     measure m o f --> measure m s
MONOTONE_CONVERGENCE_BIGINTER2
|- ∀m f.
     measure_space m ∧ f ∈ (𝕌(:num) -> measurable_sets m) ∧
     (∀n. f (SUC n) ⊆ f n) ⇒
     measure m o f --> measure m (BIGINTER (IMAGE f 𝕌(:num)))
MEASURE_SPACE_RESTRICTED
|- ∀m s.
     measure_space m ∧ s ∈ measurable_sets m ⇒
     measure_space (s,IMAGE (λt. s ∩ t) (measurable_sets m),measure m)
MEASURE_SPACE_CMUL
|- ∀m c.
     measure_space m ∧ 0 ≤ c ⇒
     measure_space (m_space m,measurable_sets m,(λa. c * measure m a))
BIGUNION_IMAGE_Q
|- ∀a f.
     sigma_algebra a ∧ f ∈ (Q_set -> subsets a) ⇒
     BIGUNION (IMAGE f Q_set) ∈ subsets a
SIGMA_ALGEBRA_BOREL
|- sigma_algebra Borel
MEASURABLE_BOREL
|- ∀f a.
     f ∈ measurable a Borel ⇔
     sigma_algebra a ∧ f ∈ (space a -> 𝕌(:extreal)) ∧
     ∀c. PREIMAGE f {x | x < c} ∩ space a ∈ subsets a
IN_MEASURABLE_BOREL
|- ∀f a.
     f ∈ measurable a Borel ⇔
     sigma_algebra a ∧ f ∈ (space a -> 𝕌(:extreal)) ∧
     ∀c. {x | f x < c} ∩ space a ∈ subsets a
IN_MEASURABLE_BOREL_NEGINF
|- ∀f a. f ∈ measurable a Borel ⇒ {x | f x = NegInf} ∩ space a ∈ subsets a
IN_MEASURABLE_BOREL_ALT1
|- ∀f a.
     f ∈ measurable a Borel ⇔
     sigma_algebra a ∧ f ∈ (space a -> 𝕌(:extreal)) ∧
     ∀c. {x | c ≤ f x} ∩ space a ∈ subsets a
IN_MEASURABLE_BOREL_ALT2
|- ∀f a.
     f ∈ measurable a Borel ⇔
     sigma_algebra a ∧ f ∈ (space a -> 𝕌(:extreal)) ∧
     ∀c. {x | f x ≤ c} ∩ space a ∈ subsets a
IN_MEASURABLE_BOREL_ALT3
|- ∀f a.
     f ∈ measurable a Borel ⇔
     sigma_algebra a ∧ f ∈ (space a -> 𝕌(:extreal)) ∧
     ∀c. {x | c < f x} ∩ space a ∈ subsets a
IN_MEASURABLE_BOREL_ALT4
|- ∀f a.
     f ∈ measurable a Borel ⇔
     sigma_algebra a ∧ f ∈ (space a -> 𝕌(:extreal)) ∧
     ∀c d. {x | c ≤ f x ∧ f x < d} ∩ space a ∈ subsets a
IN_MEASURABLE_BOREL_ALT5
|- ∀f a.
     f ∈ measurable a Borel ⇔
     sigma_algebra a ∧ f ∈ (space a -> 𝕌(:extreal)) ∧
     ∀c d. {x | c < f x ∧ f x ≤ d} ∩ space a ∈ subsets a
IN_MEASURABLE_BOREL_ALT6
|- ∀f a.
     f ∈ measurable a Borel ⇔
     sigma_algebra a ∧ f ∈ (space a -> 𝕌(:extreal)) ∧
     ∀c d. {x | c ≤ f x ∧ f x ≤ d} ∩ space a ∈ subsets a
IN_MEASURABLE_BOREL_ALT7
|- ∀f a.
     f ∈ measurable a Borel ⇒
     sigma_algebra a ∧ f ∈ (space a -> 𝕌(:extreal)) ∧
     ∀c d. {x | c < f x ∧ f x < d} ∩ space a ∈ subsets a
IN_MEASURABLE_BOREL_ALT8
|- ∀f a.
     f ∈ measurable a Borel ⇒
     sigma_algebra a ∧ f ∈ (space a -> 𝕌(:extreal)) ∧
     ∀c. {x | f x = c} ∩ space a ∈ subsets a
IN_MEASURABLE_BOREL_ALT9
|- ∀f a.
     f ∈ measurable a Borel ⇒
     sigma_algebra a ∧ f ∈ (space a -> 𝕌(:extreal)) ∧
     ∀c. {x | f x ≠ c} ∩ space a ∈ subsets a
IN_MEASURABLE_BOREL_ALL
|- ∀f a.
     f ∈ measurable a Borel ⇒
     (∀c. {x | f x < c} ∩ space a ∈ subsets a) ∧
     (∀c. {x | c ≤ f x} ∩ space a ∈ subsets a) ∧
     (∀c. {x | f x ≤ c} ∩ space a ∈ subsets a) ∧
     (∀c. {x | c < f x} ∩ space a ∈ subsets a) ∧
     (∀c d. {x | c < f x ∧ f x < d} ∩ space a ∈ subsets a) ∧
     (∀c d. {x | c ≤ f x ∧ f x < d} ∩ space a ∈ subsets a) ∧
     (∀c d. {x | c < f x ∧ f x ≤ d} ∩ space a ∈ subsets a) ∧
     (∀c d. {x | c ≤ f x ∧ f x ≤ d} ∩ space a ∈ subsets a) ∧
     (∀c. {x | f x ≠ c} ∩ space a ∈ subsets a) ∧
     ∀c. {x | f x = c} ∩ space a ∈ subsets a
IN_MEASURABLE_BOREL_ALL_MEASURE
|- ∀f m.
     f ∈ measurable (m_space m,measurable_sets m) Borel ⇒
     (∀c. {x | f x < c} ∩ m_space m ∈ measurable_sets m) ∧
     (∀c. {x | c ≤ f x} ∩ m_space m ∈ measurable_sets m) ∧
     (∀c. {x | f x ≤ c} ∩ m_space m ∈ measurable_sets m) ∧
     (∀c. {x | c < f x} ∩ m_space m ∈ measurable_sets m) ∧
     (∀c d. {x | c < f x ∧ f x < d} ∩ m_space m ∈ measurable_sets m) ∧
     (∀c d. {x | c ≤ f x ∧ f x < d} ∩ m_space m ∈ measurable_sets m) ∧
     (∀c d. {x | c < f x ∧ f x ≤ d} ∩ m_space m ∈ measurable_sets m) ∧
     (∀c d. {x | c ≤ f x ∧ f x ≤ d} ∩ m_space m ∈ measurable_sets m) ∧
     (∀c. {x | f x = c} ∩ m_space m ∈ measurable_sets m) ∧
     ∀c. {x | f x ≠ c} ∩ m_space m ∈ measurable_sets m
IN_MEASURABLE_BOREL_LT
|- ∀f g a.
     f ∈ measurable a Borel ∧ g ∈ measurable a Borel ⇒
     {x | f x < g x} ∩ space a ∈ subsets a
IN_MEASURABLE_BOREL_LE
|- ∀f g a.
     f ∈ measurable a Borel ∧ g ∈ measurable a Borel ⇒
     {x | f x ≤ g x} ∩ space a ∈ subsets a
SPACE_BOREL
|- space Borel = 𝕌(:extreal)
BOREL_MEASURABLE_SETS1
|- ∀c. {x | x < c} ∈ subsets Borel
BOREL_MEASURABLE_SETS2
|- ∀c. {x | c ≤ x} ∈ subsets Borel
BOREL_MEASURABLE_SETS3
|- ∀c. {x | x ≤ c} ∈ subsets Borel
BOREL_MEASURABLE_SETS4
|- ∀c. {x | c < x} ∈ subsets Borel
BOREL_MEASURABLE_SETS5
|- ∀c d. {x | c ≤ x ∧ x < d} ∈ subsets Borel
BOREL_MEASURABLE_SETS6
|- ∀c d. {x | c < x ∧ x ≤ d} ∈ subsets Borel
BOREL_MEASURABLE_SETS7
|- ∀c d. {x | c ≤ x ∧ x ≤ d} ∈ subsets Borel
BOREL_MEASURABLE_SETS8
|- ∀c d. {x | c < x ∧ x < d} ∈ subsets Borel
BOREL_MEASURABLE_SETS9
|- ∀c. {c} ∈ subsets Borel
BOREL_MEASURABLE_SETS10
|- ∀c. {x | x ≠ c} ∈ subsets Borel
BOREL_MEASURABLE_SETS
|- (∀c. {x | x < c} ∈ subsets Borel) ∧ (∀c. {x | c ≤ x} ∈ subsets Borel) ∧
   (∀c. {x | c < x} ∈ subsets Borel) ∧ (∀c. {x | x ≤ c} ∈ subsets Borel) ∧
   (∀c d. {x | c < x ∧ x < d} ∈ subsets Borel) ∧
   (∀c d. {x | c ≤ x ∧ x < d} ∈ subsets Borel) ∧
   (∀c d. {x | c < x ∧ x ≤ d} ∈ subsets Borel) ∧
   (∀c d. {x | c ≤ x ∧ x ≤ d} ∈ subsets Borel) ∧ (∀c. {c} ∈ subsets Borel) ∧
   ∀c. {x | x ≠ c} ∈ subsets Borel
IN_MEASURABLE_BOREL_CONST
|- ∀a k f.
     sigma_algebra a ∧ (∀x. x ∈ space a ⇒ (f x = k)) ⇒ f ∈ measurable a Borel
IN_MEASURABLE_BOREL_INDICATOR
|- ∀a A f.
     sigma_algebra a ∧ A ∈ subsets a ∧
     (∀x. x ∈ space a ⇒ (f x = indicator_fn A x)) ⇒
     f ∈ measurable a Borel
IN_MEASURABLE_BOREL_CMUL
|- ∀a f g z.
     sigma_algebra a ∧ f ∈ measurable a Borel ∧
     (∀x. x ∈ space a ⇒ (g x = Normal z * f x)) ⇒
     g ∈ measurable a Borel
IN_MEASURABLE_BOREL_ABS
|- ∀a f g.
     sigma_algebra a ∧ f ∈ measurable a Borel ∧
     (∀x. x ∈ space a ⇒ (g x = abs (f x))) ⇒
     g ∈ measurable a Borel
IN_MEASURABLE_BOREL_SQR
|- ∀a f g.
     sigma_algebra a ∧ f ∈ measurable a Borel ∧
     (∀x. x ∈ space a ⇒ (g x = f x pow 2)) ⇒
     g ∈ measurable a Borel
IN_MEASURABLE_BOREL_ADD
|- ∀a f g h.
     sigma_algebra a ∧ f ∈ measurable a Borel ∧ g ∈ measurable a Borel ∧
     (∀x. x ∈ space a ⇒ (h x = f x + g x)) ⇒
     h ∈ measurable a Borel
IN_MEASURABLE_BOREL_SUB
|- ∀a f g h.
     sigma_algebra a ∧ f ∈ measurable a Borel ∧ g ∈ measurable a Borel ∧
     (∀x. x ∈ space a ⇒ (h x = f x − g x)) ⇒
     h ∈ measurable a Borel
IN_MEASURABLE_BOREL_MUL
|- ∀a f g h.
     sigma_algebra a ∧ f ∈ measurable a Borel ∧
     (∀x.
        x ∈ space a ⇒
        f x ≠ NegInf ∧ f x ≠ PosInf ∧ g x ≠ NegInf ∧ g x ≠ PosInf) ∧
     g ∈ measurable a Borel ∧ (∀x. x ∈ space a ⇒ (h x = f x * g x)) ⇒
     h ∈ measurable a Borel
IN_MEASURABLE_BOREL_SUM
|- ∀a f g s.
     FINITE s ∧ sigma_algebra a ∧ (∀i. i ∈ s ⇒ f i ∈ measurable a Borel) ∧
     (∀x. x ∈ space a ⇒ (g x = SIGMA (λi. f i x) s)) ⇒
     g ∈ measurable a Borel
IN_MEASURABLE_BOREL_CMUL_INDICATOR
|- ∀a z s.
     sigma_algebra a ∧ s ∈ subsets a ⇒
     (λx. Normal z * indicator_fn s x) ∈ measurable a Borel
IN_MEASURABLE_BOREL_MUL_INDICATOR
|- ∀a f s.
     sigma_algebra a ∧ f ∈ measurable a Borel ∧ s ∈ subsets a ⇒
     (λx. f x * indicator_fn s x) ∈ measurable a Borel
IN_MEASURABLE_BOREL_MUL_INDICATOR_EQ
|- ∀a f.
     sigma_algebra a ⇒
     (f ∈ measurable a Borel ⇔
      (λx. f x * indicator_fn (space a) x) ∈ measurable a Borel)
IN_MEASURABLE_BOREL_POS_SIMPLE_FN
|- ∀m f.
     measure_space m ∧ (∃s a x. pos_simple_fn m f s a x) ⇒
     f ∈ measurable (m_space m,measurable_sets m) Borel
IN_MEASURABLE_BOREL_POW
|- ∀n a f.
     sigma_algebra a ∧ f ∈ measurable a Borel ∧
     (∀x. x ∈ space a ⇒ f x ≠ NegInf ∧ f x ≠ PosInf) ⇒
     (λx. f x pow n) ∈ measurable a Borel
IN_MEASURABLE_BOREL_MAX
|- ∀a f g.
     sigma_algebra a ∧ f ∈ measurable a Borel ∧ g ∈ measurable a Borel ⇒
     (λx. max (f x) (g x)) ∈ measurable a Borel
IN_MEASURABLE_BOREL_MONO_SUP
|- ∀fn f a.
     sigma_algebra a ∧ (∀n. fn n ∈ measurable a Borel) ∧
     (∀n x. x ∈ space a ⇒ fn n x ≤ fn (SUC n) x) ∧
     (∀x. x ∈ space a ⇒ (f x = sup (IMAGE (λn. fn n x) 𝕌(:num)))) ⇒
     f ∈ measurable a Borel
FN_PLUS_POS
|- ∀g x. 0 ≤ fn_plus g x
FN_MINUS_POS
|- ∀g x. 0 ≤ fn_minus g x
FN_PLUS_POS_ID
|- (∀x. 0 ≤ g x) ⇒ (fn_plus g = g)
FN_MINUS_POS_ZERO
|- (∀x. 0 ≤ g x) ⇒ (fn_minus g = (λx. 0))
FN_PLUS_CMUL
|- ∀f c.
     (0 ≤ c ⇒ (fn_plus (λx. Normal c * f x) = (λx. Normal c * fn_plus f x))) ∧
     (c ≤ 0 ⇒ (fn_plus (λx. Normal c * f x) = (λx. -Normal c * fn_minus f x)))
FN_MINUS_CMUL
|- ∀f c.
     (0 ≤ c ⇒
      (fn_minus (λx. Normal c * f x) = (λx. Normal c * fn_minus f x))) ∧
     (c ≤ 0 ⇒ (fn_minus (λx. Normal c * f x) = (λx. -Normal c * fn_plus f x)))
FN_PLUS_ADD_LE
|- ∀f g x. fn_plus (λx. f x + g x) x ≤ fn_plus f x + fn_plus g x
FN_MINUS_ADD_LE
|- ∀f g x. fn_minus (λx. f x + g x) x ≤ fn_minus f x + fn_minus g x
IN_MEASURABLE_BOREL_FN_PLUS
|- ∀a f. f ∈ measurable a Borel ⇒ fn_plus f ∈ measurable a Borel
IN_MEASURABLE_BOREL_FN_MINUS
|- ∀a f. f ∈ measurable a Borel ⇒ fn_minus f ∈ measurable a Borel
IN_MEASURABLE_BOREL_PLUS_MINUS
|- ∀a f.
     f ∈ measurable a Borel ⇔
     fn_plus f ∈ measurable a Borel ∧ fn_minus f ∈ measurable a Borel
INDICATOR_FN_MUL_INTER
|- ∀A B.
     (λt. indicator_fn A t * indicator_fn B t) = (λt. indicator_fn (A ∩ B) t)
indicator_fn_split
|- ∀r s b.
     FINITE r ∧ (BIGUNION (IMAGE b r) = s) ∧
     (∀i j. i ∈ r ∧ j ∈ r ∧ i ≠ j ⇒ DISJOINT (b i) (b j)) ⇒
     ∀a.
       a ⊆ s ⇒ (indicator_fn a = (λx. SIGMA (λi. indicator_fn (a ∩ b i) x) r))
indicator_fn_suminf
|- ∀a x.
     (∀m n. m ≠ n ⇒ DISJOINT (a m) (a n)) ⇒
     (suminf (λi. indicator_fn (a i) x) =
      indicator_fn (BIGUNION (IMAGE a 𝕌(:num))) x)
measure_split
|- ∀r b m.
     measure_space m ∧ FINITE r ∧ (BIGUNION (IMAGE b r) = m_space m) ∧
     (∀i j. i ∈ r ∧ j ∈ r ∧ i ≠ j ⇒ DISJOINT (b i) (b j)) ∧
     (∀i. i ∈ r ⇒ b i ∈ measurable_sets m) ⇒
     ∀a.
       a ∈ measurable_sets m ⇒
       (measure m a = SIGMA (λi. measure m (a ∩ b i)) r)