Theory "normalForms"

Parents     bool

Signature

Constant Type
EXT_POINT :(α -> β) -> (α -> β) -> α
UNIV_POINT :(α -> bool) -> α

Definitions

EXT_POINT_DEF
|- ∀f g. (f (EXT_POINT f g) = g (EXT_POINT f g)) ⇒ (f = g)
UNIV_POINT_DEF
|- ∀p. p (UNIV_POINT p) ⇒ ∀x. p x


Theorems

EXT_POINT
|- ∀f g. (f (EXT_POINT f g) = g (EXT_POINT f g)) ⇔ (f = g)
UNIV_POINT
|- ∀p. p (UNIV_POINT p) ⇔ ∀x. p x