- EXISTS_LIST
-
|- (∃l. P l) ⇔ P [] ∨ ∃h t. P (h::t)
- SUM_SUM_ACC
-
|- ∀L. SUM L = SUM_ACC L 0
- SUM_ACC_SUM_LEM
-
|- ∀L n. SUM_ACC L n = SUM L + n
- REVERSE_REV
-
|- ∀L. REVERSE L = REV L []
- LENGTH_LEN
-
|- ∀L. LENGTH L = LEN L 0
- REV_REVERSE_LEM
-
|- ∀L1 L2. REV L1 L2 = REVERSE L1 ++ L2
- LEN_LENGTH_LEM
-
|- ∀L n. LEN L n = LENGTH L + n
- INFINITE_LIST_UNIV
-
|- INFINITE 𝕌(:α list)
- MAP_ZIP_SAME
-
|- ∀ls f. MAP f (ZIP (ls,ls)) = MAP (λx. f (x,x)) ls
- FOLDL_ZIP_SAME
-
|- ∀ls f e. FOLDL f e (ZIP (ls,ls)) = FOLDL (λx y. f x (y,y)) e ls
- FOLDL_UNION_BIGUNION_paired
-
|- ∀f ls s.
FOLDL (λs (x,y). s ∪ f x y) s ls =
s ∪ BIGUNION (IMAGE (UNCURRY f) (LIST_TO_SET ls))
- FOLDL_UNION_BIGUNION
-
|- ∀f ls s.
FOLDL (λs x. s ∪ f x) s ls = s ∪ BIGUNION (IMAGE f (LIST_TO_SET ls))
- REVERSE_GENLIST
-
|- REVERSE (GENLIST f n) = GENLIST (λm. f (PRE n − m)) n
- EL_REVERSE
-
|- ∀n l. n < LENGTH l ⇒ (EL n (REVERSE l) = EL (PRE (LENGTH l − n)) l)
- SUM_IMAGE_eq_SUM_MAP_SET_TO_LIST
-
|- FINITE s ⇒ (∑ f s = SUM (MAP f (SET_TO_LIST s)))
- SUM_MAP_FOLDL
-
|- ∀ls. SUM (MAP f ls) = FOLDL (λa e. a + f e) 0 ls
- SUM_APPEND
-
|- ∀l1 l2. SUM (l1 ++ l2) = SUM l1 + SUM l2
- SUM_SNOC
-
|- ∀x l. SUM (SNOC x l) = SUM l + x
- FOLDL_SNOC
-
|- ∀f e x l. FOLDL f e (SNOC x l) = f (FOLDL f e l) x
- ALL_DISTINCT_GENLIST
-
|- ALL_DISTINCT (GENLIST f n) ⇔
∀m1 m2. m1 < n ∧ m2 < n ∧ (f m1 = f m2) ⇒ (m1 = m2)
- ALL_DISTINCT_SNOC
-
|- ∀x l. ALL_DISTINCT (SNOC x l) ⇔ ¬MEM x l ∧ ALL_DISTINCT l
- MEM_GENLIST
-
|- MEM x (GENLIST f n) ⇔ ∃m. m < n ∧ (x = f m)
- GENLIST_NUMERALS
-
|- (GENLIST f 0 = []) ∧ (GENLIST f (NUMERAL n) = GENLIST_AUX f (NUMERAL n) [])
- GENLIST_GENLIST_AUX
-
|- ∀n. GENLIST f n = GENLIST_AUX f n []
- NULL_GENLIST
-
|- ∀n f. NULL (GENLIST f n) ⇔ (n = 0)
- GENLIST_CONS
-
|- GENLIST f (SUC n) = f 0::GENLIST (f o SUC) n
- ZIP_GENLIST
-
|- ∀l f n.
(LENGTH l = n) ⇒ (ZIP (l,GENLIST f n) = GENLIST (λx. (EL x l,f x)) n)
- TL_GENLIST
-
|- ∀f n. TL (GENLIST f (SUC n)) = GENLIST (f o SUC) n
- EXISTS_GENLIST
-
|- ∀n. EXISTS P (GENLIST f n) ⇔ ∃i. i < n ∧ P (f i)
- EVERY_GENLIST
-
|- ∀n. EVERY P (GENLIST f n) ⇔ ∀i. i < n ⇒ P (f i)
- GENLIST_APPEND
-
|- ∀f a b. GENLIST f (a + b) = GENLIST f b ++ GENLIST (λt. f (t + b)) a
- GENLIST_FUN_EQ
-
|- ∀n f g. (GENLIST f n = GENLIST g n) ⇔ ∀x. x < n ⇒ (f x = g x)
- HD_GENLIST_COR
-
|- ∀n f. 0 < n ⇒ (HD (GENLIST f n) = f 0)
- HD_GENLIST
-
|- HD (GENLIST f (SUC n)) = f 0
- EL_GENLIST
-
|- ∀f n x. x < n ⇒ (EL x (GENLIST f n) = f x)
- MAP_GENLIST
-
|- ∀f g n. MAP f (GENLIST g n) = GENLIST (f o g) n
- GENLIST_AUX_compute
-
|- (∀f l. GENLIST_AUX f 0 l = l) ∧
(∀f n l.
GENLIST_AUX f (NUMERAL (BIT1 n)) l =
GENLIST_AUX f (NUMERAL (BIT1 n) − 1) (f (NUMERAL (BIT1 n) − 1)::l)) ∧
∀f n l.
GENLIST_AUX f (NUMERAL (BIT2 n)) l =
GENLIST_AUX f (NUMERAL (BIT1 n)) (f (NUMERAL (BIT1 n))::l)
- LENGTH_GENLIST
-
|- ∀f n. LENGTH (GENLIST f n) = n
- SNOC_CASES
-
|- ∀ll. (ll = []) ∨ ∃x l. ll = SNOC x l
- SNOC_INDUCT
-
|- ∀P. P [] ∧ (∀l. P l ⇒ ∀x. P (SNOC x l)) ⇒ ∀l. P l
- SNOC_Axiom
-
|- ∀e f. ∃fn. (fn [] = e) ∧ ∀x l. fn (SNOC x l) = f x l (fn l)
- REVERSE_SNOC
-
|- ∀x l. REVERSE (SNOC x l) = x::REVERSE l
- REVERSE_SNOC_DEF
-
|- (REVERSE [] = []) ∧ ∀x l. REVERSE (x::l) = SNOC x (REVERSE l)
- SNOC_11
-
|- ∀x y a b. (SNOC x y = SNOC a b) ⇔ (x = a) ∧ (y = b)
- MEM_SNOC
-
|- ∀y x l. MEM y (SNOC x l) ⇔ (y = x) ∨ MEM y l
- EXISTS_SNOC
-
|- ∀P x l. EXISTS P (SNOC x l) ⇔ P x ∨ EXISTS P l
- EVERY_SNOC
-
|- ∀P x l. EVERY P (SNOC x l) ⇔ EVERY P l ∧ P x
- APPEND_SNOC
-
|- ∀l1 x l2. l1 ++ SNOC x l2 = SNOC x (l1 ++ l2)
- EL_LENGTH_SNOC
-
|- ∀l x. EL (LENGTH l) (SNOC x l) = x
- EL_SNOC
-
|- ∀n l. n < LENGTH l ⇒ ∀x. EL n (SNOC x l) = EL n l
- MAP_SNOC
-
|- ∀f x l. MAP f (SNOC x l) = SNOC (f x) (MAP f l)
- LIST_TO_SET_SNOC
-
|- LIST_TO_SET (SNOC x ls) = x INSERT LIST_TO_SET ls
- SNOC_APPEND
-
|- ∀x l. SNOC x l = l ++ [x]
- FRONT_SNOC
-
|- ∀x l. FRONT (SNOC x l) = l
- LAST_SNOC
-
|- ∀x l. LAST (SNOC x l) = x
- LENGTH_SNOC
-
|- ∀x l. LENGTH (SNOC x l) = SUC (LENGTH l)
- isPREFIX_THM
-
|- ([] ≼ l ⇔ T) ∧ (h::t ≼ [] ⇔ F) ∧ (h1::t1 ≼ h2::t2 ⇔ (h1 = h2) ∧ t1 ≼ t2)
- ITSET_eq_FOLDL_SET_TO_LIST
-
|- ∀s. FINITE s ⇒ ∀f a. ITSET f s a = FOLDL (combin$C f) a (SET_TO_LIST s)
- ALL_DISTINCT_SET_TO_LIST
-
|- ∀s. FINITE s ⇒ ALL_DISTINCT (SET_TO_LIST s)
- SET_TO_LIST_SING
-
|- SET_TO_LIST {x} = [x]
- MEM_SET_TO_LIST
-
|- ∀s. FINITE s ⇒ ∀x. MEM x (SET_TO_LIST s) ⇔ x ∈ s
- SET_TO_LIST_IN_MEM
-
|- ∀s. FINITE s ⇒ ∀x. x ∈ s ⇔ MEM x (SET_TO_LIST s)
- SET_TO_LIST_CARD
-
|- ∀s. FINITE s ⇒ (LENGTH (SET_TO_LIST s) = CARD s)
- SET_TO_LIST_INV
-
|- ∀s. FINITE s ⇒ (LIST_TO_SET (SET_TO_LIST s) = s)
- SET_TO_LIST_EMPTY
-
|- SET_TO_LIST ∅ = []
- SET_TO_LIST_IND
-
|- ∀P. (∀s. (FINITE s ∧ s ≠ ∅ ⇒ P (REST s)) ⇒ P s) ⇒ ∀v. P v
- SET_TO_LIST_THM
-
|- FINITE s ⇒
(SET_TO_LIST s = if s = ∅ then [] else CHOICE s::SET_TO_LIST (REST s))
- LIST_TO_SET_FILTER
-
|- LIST_TO_SET (FILTER P l) = {x | P x} ∩ LIST_TO_SET l
- LIST_TO_SET_MAP
-
|- ∀f l. LIST_TO_SET (MAP f l) = IMAGE f (LIST_TO_SET l)
- LIST_TO_SET_THM
-
|- (LIST_TO_SET [] = ∅) ∧ (LIST_TO_SET (h::t) = h INSERT LIST_TO_SET t)
- LIST_TO_SET_REVERSE
-
|- ∀ls. LIST_TO_SET (REVERSE ls) = LIST_TO_SET ls
- ALL_DISTINCT_CARD_LIST_TO_SET
-
|- ∀ls. ALL_DISTINCT ls ⇒ (CARD (LIST_TO_SET ls) = LENGTH ls)
- CARD_LIST_TO_SET
-
|- CARD (LIST_TO_SET ls) ≤ LENGTH ls
- INJ_MAP_EQ
-
|- ∀f l1 l2.
INJ f (LIST_TO_SET l1 ∪ LIST_TO_SET l2) 𝕌(:β) ∧ (MAP f l1 = MAP f l2) ⇒
(l1 = l2)
- SUM_MAP_MEM_bound
-
|- ∀f x ls. MEM x ls ⇒ f x ≤ SUM (MAP f ls)
- SUM_IMAGE_LIST_TO_SET_upper_bound
-
|- ∀ls. ∑ f (LIST_TO_SET ls) ≤ SUM (MAP f ls)
- FINITE_LIST_TO_SET
-
|- ∀l. FINITE (LIST_TO_SET l)
- LIST_TO_SET_EQ_EMPTY
-
|- ((LIST_TO_SET l = ∅) ⇔ (l = [])) ∧ ((∅ = LIST_TO_SET l) ⇔ (l = []))
- UNION_APPEND
-
|- ∀l1 l2. LIST_TO_SET l1 ∪ LIST_TO_SET l2 = LIST_TO_SET (l1 ++ l2)
- LIST_TO_SET_APPEND
-
|- ∀l1 l2. LIST_TO_SET (l1 ++ l2) = LIST_TO_SET l1 ∪ LIST_TO_SET l2
- LRC_MEM_right
-
|- LRC R (h::t) x y ∧ MEM e t ⇒ ∃z p. R z e ∧ LRC R p x z
- LRC_MEM
-
|- LRC R ls x y ∧ MEM e ls ⇒ ∃z t. R e z ∧ LRC R t z y
- NRC_LRC
-
|- NRC R n x y ⇔ ∃ls. LRC R ls x y ∧ (LENGTH ls = n)
- ALL_DISTINCT_REVERSE
-
|- ∀l. ALL_DISTINCT (REVERSE l) ⇔ ALL_DISTINCT l
- ALL_DISTINCT_ZIP_SWAP
-
|- ∀l1 l2.
ALL_DISTINCT (ZIP (l1,l2)) ∧ (LENGTH l1 = LENGTH l2) ⇒
ALL_DISTINCT (ZIP (l2,l1))
- ALL_DISTINCT_ZIP
-
|- ∀l1 l2.
ALL_DISTINCT l1 ∧ (LENGTH l1 = LENGTH l2) ⇒ ALL_DISTINCT (ZIP (l1,l2))
- ALL_DISTINCT_SING
-
|- ∀x. ALL_DISTINCT [x]
- ALL_DISTINCT_APPEND
-
|- ∀l1 l2.
ALL_DISTINCT (l1 ++ l2) ⇔
ALL_DISTINCT l1 ∧ ALL_DISTINCT l2 ∧ ∀e. MEM e l1 ⇒ ¬MEM e l2
- ALL_DISTINCT_EL_IMP
-
|- ∀l n1 n2.
ALL_DISTINCT l ∧ n1 < LENGTH l ∧ n2 < LENGTH l ⇒
((EL n1 l = EL n2 l) ⇔ (n1 = n2))
- EL_ALL_DISTINCT_EL_EQ
-
|- ∀l.
ALL_DISTINCT l ⇔
∀n1 n2. n1 < LENGTH l ∧ n2 < LENGTH l ⇒ ((EL n1 l = EL n2 l) ⇔ (n1 = n2))
- ALL_DISTINCT_MAP
-
|- ∀f ls. ALL_DISTINCT (MAP f ls) ⇒ ALL_DISTINCT ls
- FILTER_ALL_DISTINCT
-
|- ∀P l. ALL_DISTINCT l ⇒ ALL_DISTINCT (FILTER P l)
- ALL_DISTINCT_FILTER
-
|- ∀l. ALL_DISTINCT l ⇔ ∀x. MEM x l ⇒ (FILTER ($= x) l = [x])
- EVERY2_mono
-
|- (∀x y. R1 x y ⇒ R2 x y) ⇒ LIST_REL R1 l1 l2 ⇒ LIST_REL R2 l1 l2
- EVERY2_LENGTH
-
|- ∀P l1 l2. LIST_REL P l1 l2 ⇒ (LENGTH l1 = LENGTH l2)
- EVERY2_EVERY
-
|- ∀l1 l2 f.
LIST_REL f l1 l2 ⇔
(LENGTH l1 = LENGTH l2) ∧ EVERY (UNCURRY f) (ZIP (l1,l2))
- MAP_EQ_EVERY2
-
|- ∀f1 f2 l1 l2.
(MAP f1 l1 = MAP f2 l2) ⇔
(LENGTH l1 = LENGTH l2) ∧ LIST_REL (λx y. f1 x = f2 y) l1 l2
- EVERY2_cong
-
|- ∀l1 l1' l2 l2' P P'.
(l1 = l1') ∧ (l2 = l2') ∧
(∀x y. MEM x l1' ∧ MEM y l2' ⇒ (P x y ⇔ P' x y)) ⇒
(LIST_REL P l1 l2 ⇔ LIST_REL P' l1' l2')
- FOLDL2_FOLDL
-
|- ∀l1 l2.
(LENGTH l1 = LENGTH l2) ⇒
∀f a. FOLDL2 f a l1 l2 = FOLDL (λa. UNCURRY (f a)) a (ZIP (l1,l2))
- FOLDL2_cong
-
|- ∀l1 l1' l2 l2' a a' f f'.
(l1 = l1') ∧ (l2 = l2') ∧ (a = a') ∧
(∀z b c. MEM b l1' ∧ MEM c l2' ⇒ (f z b c = f' z b c)) ⇒
(FOLDL2 f a l1 l2 = FOLDL2 f' a' l1' l2')
- FOLDL2_def
-
|- (∀f cs c bs b a. FOLDL2 f a (b::bs) (c::cs) = FOLDL2 f (f a b c) bs cs) ∧
(∀f cs a. FOLDL2 f a [] cs = a) ∧ ∀v7 v6 f a. FOLDL2 f a (v6::v7) [] = a
- FOLDL2_ind
-
|- ∀P.
(∀f a b bs c cs. P f (f a b c) bs cs ⇒ P f a (b::bs) (c::cs)) ∧
(∀f a cs. P f a [] cs) ∧ (∀f a v6 v7. P f a (v6::v7) []) ⇒
∀v v1 v2 v3. P v v1 v2 v3
- DROP_NIL
-
|- ∀ls n. (DROP n ls = []) ⇔ n ≥ LENGTH ls
- MEM_DROP
-
|- ∀x ls n.
MEM x (DROP n ls) ⇔
n < LENGTH ls ∧ (x = EL n ls) ∨ MEM x (DROP (SUC n) ls)
- LENGTH_DROP
-
|- ∀n l. LENGTH (DROP n l) = LENGTH l − n
- TAKE_DROP
-
|- ∀n l. TAKE n l ++ DROP n l = l
- DROP_0
-
|- DROP 0 l = l
- TAKE_APPEND2
-
|- ∀n. LENGTH l1 < n ⇒ (TAKE n (l1 ++ l2) = l1 ++ TAKE (n − LENGTH l1) l2)
- TAKE_APPEND1
-
|- ∀n. n ≤ LENGTH l1 ⇒ (TAKE n (l1 ++ l2) = TAKE n l1)
- LENGTH_TAKE
-
|- ∀n l. n ≤ LENGTH l ⇒ (LENGTH (TAKE n l) = n)
- TAKE_LENGTH_ID
-
|- ∀l. TAKE (LENGTH l) l = l
- TAKE_0
-
|- TAKE 0 l = []
- LAST_APPEND_CONS
-
|- ∀h l1 l2. LAST (l1 ++ h::l2) = LAST (h::l2)
- LAST_CONS_cond
-
|- LAST (h::t) = if t = [] then h else LAST t
- APPEND_FRONT_LAST
-
|- ∀l. l ≠ [] ⇒ (FRONT l ++ [LAST l] = l)
- FRONT_CONS_EQ_NIL
-
|- (∀x xs. (FRONT (x::xs) = []) ⇔ (xs = [])) ∧
(∀x xs. ([] = FRONT (x::xs)) ⇔ (xs = [])) ∧
∀x xs. NULL (FRONT (x::xs)) ⇔ NULL xs
- LENGTH_FRONT_CONS
-
|- ∀x xs. LENGTH (FRONT (x::xs)) = LENGTH xs
- FRONT_CONS
-
|- (∀x. FRONT [x] = []) ∧ ∀x y z. FRONT (x::y::z) = x::FRONT (y::z)
- LAST_EL
-
|- ∀ls. ls ≠ [] ⇒ (LAST ls = EL (PRE (LENGTH ls)) ls)
- LAST_CONS
-
|- (∀x. LAST [x] = x) ∧ ∀x y z. LAST (x::y::z) = LAST (y::z)
- FILTER_REVERSE
-
|- ∀l P. FILTER P (REVERSE l) = REVERSE (FILTER P l)
- REVERSE_EQ_SING
-
|- (REVERSE l = [e]) ⇔ (l = [e])
- REVERSE_EQ_NIL
-
|- (REVERSE l = []) ⇔ (l = [])
- LENGTH_REVERSE
-
|- ∀l. LENGTH (REVERSE l) = LENGTH l
- MEM_REVERSE
-
|- ∀l x. MEM x (REVERSE l) ⇔ MEM x l
- REVERSE_11
-
|- ∀l1 l2. (REVERSE l1 = REVERSE l2) ⇔ (l1 = l2)
- REVERSE_REVERSE
-
|- ∀l. REVERSE (REVERSE l) = l
- REVERSE_APPEND
-
|- ∀l1 l2. REVERSE (l1 ++ l2) = REVERSE l2 ++ REVERSE l1
- LIST_REL_EVERY_ZIP
-
|- ∀R l1 l2.
LIST_REL R l1 l2 ⇔
(LENGTH l1 = LENGTH l2) ∧ EVERY (UNCURRY R) (ZIP (l1,l2))
- SUM_MAP_PLUS_ZIP
-
|- ∀ls1 ls2.
(LENGTH ls1 = LENGTH ls2) ∧ (∀x y. f (x,y) = g x + h y) ⇒
(SUM (MAP f (ZIP (ls1,ls2))) = SUM (MAP g ls1) + SUM (MAP h ls2))
- MEM_EL
-
|- ∀l x. MEM x l ⇔ ∃n. n < LENGTH l ∧ (x = EL n l)
- MAP_ZIP
-
|- (LENGTH l1 = LENGTH l2) ⇒
(MAP FST (ZIP (l1,l2)) = l1) ∧ (MAP SND (ZIP (l1,l2)) = l2) ∧
(MAP (f o FST) (ZIP (l1,l2)) = MAP f l1) ∧
(MAP (g o SND) (ZIP (l1,l2)) = MAP g l2)
- MAP2_MAP
-
|- ∀l1 l2.
(LENGTH l1 = LENGTH l2) ⇒
∀f. MAP2 f l1 l2 = MAP (UNCURRY f) (ZIP (l1,l2))
- MAP2_ZIP
-
|- ∀l1 l2.
(LENGTH l1 = LENGTH l2) ⇒
∀f. MAP2 f l1 l2 = MAP (UNCURRY f) (ZIP (l1,l2))
- EL_ZIP
-
|- ∀l1 l2 n.
(LENGTH l1 = LENGTH l2) ∧ n < LENGTH l1 ⇒
(EL n (ZIP (l1,l2)) = (EL n l1,EL n l2))
- MEM_ZIP
-
|- ∀l1 l2 p.
(LENGTH l1 = LENGTH l2) ⇒
(MEM p (ZIP (l1,l2)) ⇔ ∃n. n < LENGTH l1 ∧ (p = (EL n l1,EL n l2)))
- ZIP_MAP
-
|- ∀l1 l2 f1 f2.
(LENGTH l1 = LENGTH l2) ⇒
(ZIP (MAP f1 l1,l2) = MAP (λp. (f1 (FST p),SND p)) (ZIP (l1,l2))) ∧
(ZIP (l1,MAP f2 l2) = MAP (λp. (FST p,f2 (SND p))) (ZIP (l1,l2)))
- UNZIP_ZIP
-
|- ∀l1 l2. (LENGTH l1 = LENGTH l2) ⇒ (UNZIP (ZIP (l1,l2)) = (l1,l2))
- ZIP_UNZIP
-
|- ∀l. ZIP (UNZIP l) = l
- LENGTH_UNZIP
-
|- ∀pl.
(LENGTH (FST (UNZIP pl)) = LENGTH pl) ∧
(LENGTH (SND (UNZIP pl)) = LENGTH pl)
- LENGTH_ZIP
-
|- ∀l1 l2.
(LENGTH l1 = LENGTH l2) ⇒
(LENGTH (ZIP (l1,l2)) = LENGTH l1) ∧ (LENGTH (ZIP (l1,l2)) = LENGTH l2)
- UNZIP_MAP
-
|- ∀L. UNZIP L = (MAP FST L,MAP SND L)
- UNZIP_THM
-
|- (UNZIP [] = ([],[])) ∧
(UNZIP ((x,y)::t) = (let (L1,L2) = UNZIP t in (x::L1,y::L2)))
- EVERY_MONOTONIC
-
|- ∀P Q. (∀x. P x ⇒ Q x) ⇒ ∀l. EVERY P l ⇒ EVERY Q l
- EVERY_CONG
-
|- ∀l1 l2 P P'.
(l1 = l2) ∧ (∀x. MEM x l2 ⇒ (P x ⇔ P' x)) ⇒ (EVERY P l1 ⇔ EVERY P' l2)
- EXISTS_CONG
-
|- ∀l1 l2 P P'.
(l1 = l2) ∧ (∀x. MEM x l2 ⇒ (P x ⇔ P' x)) ⇒ (EXISTS P l1 ⇔ EXISTS P' l2)
- MAP2_CONG
-
|- ∀l1 l1' l2 l2' f f'.
(l1 = l1') ∧ (l2 = l2') ∧
(∀x y. MEM x l1' ∧ MEM y l2' ⇒ (f x y = f' x y)) ⇒
(MAP2 f l1 l2 = MAP2 f' l1' l2')
- MAP_CONG
-
|- ∀l1 l2 f f'.
(l1 = l2) ∧ (∀x. MEM x l2 ⇒ (f x = f' x)) ⇒ (MAP f l1 = MAP f' l2)
- FOLDL_CONG
-
|- ∀l l' b b' f f'.
(l = l') ∧ (b = b') ∧ (∀x a. MEM x l' ⇒ (f a x = f' a x)) ⇒
(FOLDL f b l = FOLDL f' b' l')
- FOLDR_CONG
-
|- ∀l l' b b' f f'.
(l = l') ∧ (b = b') ∧ (∀x a. MEM x l' ⇒ (f x a = f' x a)) ⇒
(FOLDR f b l = FOLDR f' b' l')
- list_size_cong
-
|- ∀M N f f'.
(M = N) ∧ (∀x. MEM x N ⇒ (f x = f' x)) ⇒ (list_size f M = list_size f' N)
- LIST_REL_LENGTH
-
|- ∀x y. LIST_REL R x y ⇒ (LENGTH x = LENGTH y)
- LIST_REL_MAP2
-
|- LIST_REL (λa b. R a b) l1 (MAP f l2) ⇔ LIST_REL (λa b. R a (f b)) l1 l2
- LIST_REL_MAP1
-
|- LIST_REL R (MAP f l1) l2 ⇔ LIST_REL (R o f) l1 l2
- LIST_REL_CONJ
-
|- LIST_REL (λa b. P a b ∧ Q a b) l1 l2 ⇔
LIST_REL (λa b. P a b) l1 l2 ∧ LIST_REL (λa b. Q a b) l1 l2
- LIST_REL_CONS2
-
|- LIST_REL R xs (h::t) ⇔ ∃h' t'. (xs = h'::t') ∧ R h' h ∧ LIST_REL R t' t
- LIST_REL_CONS1
-
|- LIST_REL R (h::t) xs ⇔ ∃h' t'. (xs = h'::t') ∧ R h h' ∧ LIST_REL R t t'
- LIST_REL_NIL
-
|- (LIST_REL R [] x ⇔ (x = [])) ∧ (LIST_REL R [] y ⇔ (y = []))
- LIST_REL_mono
-
|- (∀x y. R1 x y ⇒ R2 x y) ⇒ LIST_REL R1 l1 l2 ⇒ LIST_REL R2 l1 l2
- LIST_REL_def
-
|- (LIST_REL R [] [] ⇔ T) ∧ (LIST_REL R (a::as) [] ⇔ F) ∧
(LIST_REL R [] (b::bs) ⇔ F) ∧
(LIST_REL R (a::as) (b::bs) ⇔ R a b ∧ LIST_REL R as bs)
- WF_LIST_PRED
-
|- WF (λL1 L2. ∃h. L2 = h::L1)
- NULL_FILTER
-
|- ∀P ls. NULL (FILTER P ls) ⇔ ∀x. MEM x ls ⇒ ¬P x
- SUM_eq_0
-
|- ∀ls. (SUM ls = 0) ⇔ ∀x. MEM x ls ⇒ (x = 0)
- EL_simp_restricted
-
|- (EL (NUMERAL (BIT1 n)) (l::ls) = EL (PRE (NUMERAL (BIT1 n))) ls) ∧
(EL (NUMERAL (BIT2 n)) (l::ls) = EL (NUMERAL (BIT1 n)) ls)
- EL_restricted
-
|- (EL 0 = HD) ∧ (EL (SUC n) (l::ls) = EL n ls)
- EL_simp
-
|- (EL (NUMERAL (BIT1 n)) l = EL (PRE (NUMERAL (BIT1 n))) (TL l)) ∧
(EL (NUMERAL (BIT2 n)) l = EL (NUMERAL (BIT1 n)) (TL l))
- EL_compute
-
|- ∀n. EL n l = if n = 0 then HD l else EL (PRE n) (TL l)
- NOT_NULL_MEM
-
|- ∀l. ¬NULL l ⇔ ∃e. MEM e l
- FILTER_COND_REWRITE
-
|- (FILTER P [] = []) ∧ (∀h. P h ⇒ (FILTER P (h::l) = h::FILTER P l)) ∧
∀h. ¬P h ⇒ (FILTER P (h::l) = FILTER P l)
- EVERY_FILTER_IMP
-
|- ∀P1 P2 l. EVERY P1 l ⇒ EVERY P1 (FILTER P2 l)
- EVERY_FILTER
-
|- ∀P1 P2 l. EVERY P1 (FILTER P2 l) ⇔ EVERY (λx. P2 x ⇒ P1 x) l
- FILTER_EQ_APPEND
-
|- ∀P l l1 l2.
(FILTER P l = l1 ++ l2) ⇔
∃l3 l4. (l = l3 ++ l4) ∧ (FILTER P l3 = l1) ∧ (FILTER P l4 = l2)
- MEM
-
|- (∀x. MEM x [] ⇔ F) ∧ ∀x h t. MEM x (h::t) ⇔ (x = h) ∨ MEM x t
- FILTER_APPEND_DISTRIB
-
|- ∀P L M. FILTER P (L ++ M) = FILTER P L ++ FILTER P M
- FILTER_EQ_CONS
-
|- ∀P l h lr.
(FILTER P l = h::lr) ⇔
∃l1 l2.
(l = l1 ++ [h] ++ l2) ∧ (FILTER P l1 = []) ∧ (FILTER P l2 = lr) ∧ P h
- FILTER_NEQ_ID
-
|- ∀P l. FILTER P l ≠ l ⇔ ∃x. MEM x l ∧ ¬P x
- FILTER_EQ_ID
-
|- ∀P l. (FILTER P l = l) ⇔ EVERY P l
- FILTER_NEQ_NIL
-
|- ∀P l. FILTER P l ≠ [] ⇔ ∃x. MEM x l ∧ P x
- FILTER_EQ_NIL
-
|- ∀P l. (FILTER P l = []) ⇔ EVERY (λx. ¬P x) l
- LENGTH_TL
-
|- ∀l. 0 < LENGTH l ⇒ (LENGTH (TL l) = LENGTH l − 1)
- FOLDR_CONS
-
|- ∀f ls a. FOLDR (λx y. f x::y) a ls = MAP f ls ++ a
- FOLDL_EQ_FOLDR
-
|- ∀f l e. ASSOC f ∧ COMM f ⇒ (FOLDL f e l = FOLDR f e l)
- LIST_EQ
-
|- ∀l1 l2.
(LENGTH l1 = LENGTH l2) ∧ (∀x. x < LENGTH l1 ⇒ (EL x l1 = EL x l2)) ⇒
(l1 = l2)
- LIST_EQ_REWRITE
-
|- ∀l1 l2.
(l1 = l2) ⇔
(LENGTH l1 = LENGTH l2) ∧ ∀x. x < LENGTH l1 ⇒ (EL x l1 = EL x l2)
- MEM_SPLIT
-
|- ∀x l. MEM x l ⇔ ∃l1 l2. l = l1 ++ x::l2
- APPEND_EQ_SELF
-
|- (∀l1 l2. (l1 ++ l2 = l1) ⇔ (l2 = [])) ∧
(∀l1 l2. (l1 ++ l2 = l2) ⇔ (l1 = [])) ∧
(∀l1 l2. (l1 = l1 ++ l2) ⇔ (l2 = [])) ∧ ∀l1 l2. (l2 = l1 ++ l2) ⇔ (l1 = [])
- APPEND_11_LENGTH
-
|- (∀l1 l2 l1' l2'.
(LENGTH l1 = LENGTH l1') ⇒
((l1 ++ l2 = l1' ++ l2') ⇔ (l1 = l1') ∧ (l2 = l2'))) ∧
∀l1 l2 l1' l2'.
(LENGTH l2 = LENGTH l2') ⇒
((l1 ++ l2 = l1' ++ l2') ⇔ (l1 = l1') ∧ (l2 = l2'))
- APPEND_LENGTH_EQ
-
|- ∀l1 l1'.
(LENGTH l1 = LENGTH l1') ⇒
∀l2 l2'.
(LENGTH l2 = LENGTH l2') ⇒
((l1 ++ l2 = l1' ++ l2') ⇔ (l1 = l1') ∧ (l2 = l2'))
- APPEND_11
-
|- (∀l1 l2 l3. (l1 ++ l2 = l1 ++ l3) ⇔ (l2 = l3)) ∧
∀l1 l2 l3. (l2 ++ l1 = l3 ++ l1) ⇔ (l2 = l3)
- APPEND_EQ_SING
-
|- (l1 ++ l2 = [e]) ⇔ (l1 = [e]) ∧ (l2 = []) ∨ (l1 = []) ∧ (l2 = [e])
- MAP_EQ_APPEND
-
|- (MAP f l = l1 ++ l2) ⇔
∃l10 l20. (l = l10 ++ l20) ∧ (l1 = MAP f l10) ∧ (l2 = MAP f l20)
- APPEND_eq_NIL
-
|- (∀l1 l2. ([] = l1 ++ l2) ⇔ (l1 = []) ∧ (l2 = [])) ∧
∀l1 l2. (l1 ++ l2 = []) ⇔ (l1 = []) ∧ (l2 = [])
- CONS_ACYCLIC
-
|- ∀l x. l ≠ x::l ∧ x::l ≠ l
- LENGTH_EQ_NIL
-
|- ∀P. (∀l. (LENGTH l = 0) ⇒ P l) ⇔ P []
- LENGTH_EQ_NUM_compute
-
|- (∀l. (LENGTH l = 0) ⇔ (l = [])) ∧
(∀l n.
(LENGTH l = NUMERAL (BIT1 n)) ⇔
∃h l'. (LENGTH l' = NUMERAL (BIT1 n) − 1) ∧ (l = h::l')) ∧
(∀l n.
(LENGTH l = NUMERAL (BIT2 n)) ⇔
∃h l'. (LENGTH l' = NUMERAL (BIT1 n)) ∧ (l = h::l')) ∧
∀l n1 n2.
(LENGTH l = n1 + n2) ⇔
∃l1 l2. (LENGTH l1 = n1) ∧ (LENGTH l2 = n2) ∧ (l = l1 ++ l2)
- LENGTH_EQ_NUM
-
|- (∀l. (LENGTH l = 0) ⇔ (l = [])) ∧
(∀l n. (LENGTH l = SUC n) ⇔ ∃h l'. (LENGTH l' = n) ∧ (l = h::l')) ∧
∀l n1 n2.
(LENGTH l = n1 + n2) ⇔
∃l1 l2. (LENGTH l1 = n1) ∧ (LENGTH l2 = n2) ∧ (l = l1 ++ l2)
- LENGTH_EQ_SUM
-
|- ∀l n1 n2.
(LENGTH l = n1 + n2) ⇔
∃l1 l2. (LENGTH l1 = n1) ∧ (LENGTH l2 = n2) ∧ (l = l1 ++ l2)
- LENGTH_EQ_CONS
-
|- ∀P n.
(∀l. (LENGTH l = SUC n) ⇒ P l) ⇔
∀l. (LENGTH l = n) ⇒ (λl. ∀x. P (x::l)) l
- LENGTH_CONS
-
|- ∀l n. (LENGTH l = SUC n) ⇔ ∃h l'. (LENGTH l' = n) ∧ (l = h::l')
- NULL_LENGTH
-
|- ∀l. NULL l ⇔ (LENGTH l = 0)
- NULL_EQ
-
|- ∀l. NULL l ⇔ (l = [])
- LENGTH_NIL_SYM
-
|- (0 = LENGTH l) ⇔ (l = [])
- LENGTH_NIL
-
|- ∀l. (LENGTH l = 0) ⇔ (l = [])
- MEM_MAP
-
|- ∀l f x. MEM x (MAP f l) ⇔ ∃y. (x = f y) ∧ MEM y l
- NOT_EXISTS
-
|- ∀P l. ¬EXISTS P l ⇔ EVERY ($~ o P) l
- NOT_EVERY
-
|- ∀P l. ¬EVERY P l ⇔ EXISTS ($~ o P) l
- EXISTS_APPEND
-
|- ∀P l1 l2. EXISTS P (l1 ++ l2) ⇔ EXISTS P l1 ∨ EXISTS P l2
- EVERY_APPEND
-
|- ∀P l1 l2. EVERY P (l1 ++ l2) ⇔ EVERY P l1 ∧ EVERY P l2
- FLAT_APPEND
-
|- ∀l1 l2. FLAT (l1 ++ l2) = FLAT l1 ++ FLAT l2
- MEM_FLAT
-
|- ∀x L. MEM x (FLAT L) ⇔ ∃l. MEM l L ∧ MEM x l
- MEM_FILTER
-
|- ∀P L x. MEM x (FILTER P L) ⇔ P x ∧ MEM x L
- MEM_APPEND
-
|- ∀e l1 l2. MEM e (l1 ++ l2) ⇔ MEM e l1 ∨ MEM e l2
- EXISTS_NOT_EVERY
-
|- ∀P l. EXISTS P l ⇔ ¬EVERY (λx. ¬P x) l
- EVERY_NOT_EXISTS
-
|- ∀P l. EVERY P l ⇔ ¬EXISTS (λx. ¬P x) l
- MONO_EXISTS
-
|- (∀x. P x ⇒ Q x) ⇒ EXISTS P l ⇒ EXISTS Q l
- EXISTS_SIMP
-
|- ∀c l. EXISTS (λx. c) l ⇔ l ≠ [] ∧ c
- EXISTS_MAP
-
|- ∀P f l. EXISTS P (MAP f l) ⇔ EXISTS (λx. P (f x)) l
- EXISTS_MEM
-
|- ∀P l. EXISTS P l ⇔ ∃e. MEM e l ∧ P e
- MONO_EVERY
-
|- (∀x. P x ⇒ Q x) ⇒ EVERY P l ⇒ EVERY Q l
- EVERY_SIMP
-
|- ∀c l. EVERY (λx. c) l ⇔ (l = []) ∨ c
- EVERY_MAP
-
|- ∀P f l. EVERY P (MAP f l) ⇔ EVERY (λx. P (f x)) l
- EVERY_MEM
-
|- ∀P l. EVERY P l ⇔ ∀e. MEM e l ⇒ P e
- EVERY_CONJ
-
|- ∀P Q l. EVERY (λx. P x ∧ Q x) l ⇔ EVERY P l ∧ EVERY Q l
- EVERY_EL
-
|- ∀l P. EVERY P l ⇔ ∀n. n < LENGTH l ⇒ P (EL n l)
- MAP_TL
-
|- ∀l f. ¬NULL l ⇒ (MAP f (TL l) = TL (MAP f l))
- EL_MAP
-
|- ∀n l. n < LENGTH l ⇒ ∀f. EL n (MAP f l) = f (EL n l)
- MAP_MAP_o
-
|- ∀f g l. MAP f (MAP g l) = MAP (f o g) l
- MAP_o
-
|- ∀f g. MAP (f o g) = MAP f o MAP g
- MAP_EQ_f
-
|- ∀f1 f2 l. (MAP f1 l = MAP f2 l) ⇔ ∀e. MEM e l ⇒ (f1 e = f2 e)
- MAP_EQ_SING
-
|- (MAP f l = [x]) ⇔ ∃x0. (l = [x0]) ∧ (x = f x0)
- MAP_EQ_CONS
-
|- (MAP f l = h::t) ⇔ ∃x0 t0. (l = x0::t0) ∧ (h = f x0) ∧ (t = MAP f t0)
- MAP_EQ_NIL
-
|- ∀l f. ((MAP f l = []) ⇔ (l = [])) ∧ (([] = MAP f l) ⇔ (l = []))
- LENGTH_MAP
-
|- ∀l f. LENGTH (MAP f l) = LENGTH l
- MAP_ID
-
|- (MAP (λx. x) l = l) ∧ (MAP I l = l)
- MAP_APPEND
-
|- ∀f l1 l2. MAP f (l1 ++ l2) = MAP f l1 ++ MAP f l2
- LENGTH_APPEND
-
|- ∀l1 l2. LENGTH (l1 ++ l2) = LENGTH l1 + LENGTH l2
- APPEND_ASSOC
-
|- ∀l1 l2 l3. l1 ++ (l2 ++ l3) = l1 ++ l2 ++ l3
- APPEND_NIL
-
|- ∀l. l ++ [] = l
- CONS
-
|- ∀l. ¬NULL l ⇒ (HD l::TL l = l)
- EQ_LIST
-
|- ∀h1 h2. (h1 = h2) ⇒ ∀l1 l2. (l1 = l2) ⇒ (h1::l1 = h2::l2)
- NOT_EQ_LIST
-
|- ∀h1 h2. h1 ≠ h2 ⇒ ∀l1 l2. h1::l1 ≠ h2::l2
- LIST_NOT_EQ
-
|- ∀l1 l2. l1 ≠ l2 ⇒ ∀h1 h2. h1::l1 ≠ h2::l2
- NOT_CONS_NIL
-
|- ∀a1 a0. a0::a1 ≠ []
- NOT_NIL_CONS
-
|- ∀a1 a0. [] ≠ a0::a1
- CONS_11
-
|- ∀a0 a1 a0' a1'. (a0::a1 = a0'::a1') ⇔ (a0 = a0') ∧ (a1 = a1')
- list_case_compute
-
|- ∀l. list_CASE l b f = if NULL l then b else f (HD l) (TL l)
- list_nchotomy
-
|- ∀l. (l = []) ∨ ∃h t. l = h::t
- list_case_cong
-
|- ∀M M' v f.
(M = M') ∧ ((M' = []) ⇒ (v = v')) ∧
(∀a0 a1. (M' = a0::a1) ⇒ (f a0 a1 = f' a0 a1)) ⇒
(list_CASE M v f = list_CASE M' v' f')
- list_distinct
-
|- ∀a1 a0. [] ≠ a0::a1
- list_11
-
|- ∀a0 a1 a0' a1'. (a0::a1 = a0'::a1') ⇔ (a0 = a0') ∧ (a1 = a1')
- datatype_list
-
|- DATATYPE (list [] CONS)
- list_Axiom_old
-
|- ∀x f. ∃!fn1. (fn1 [] = x) ∧ ∀h t. fn1 (h::t) = f (fn1 t) h t
- LIST_TO_SET
-
|- (LIST_TO_SET [] = ∅) ∧ (LIST_TO_SET (h::t) = h INSERT LIST_TO_SET t)
- IN_LIST_TO_SET
-
|- T
- MAP2_ind
-
|- ∀P.
(∀f h1 t1 h2 t2. P f t1 t2 ⇒ P f (h1::t1) (h2::t2)) ∧ (∀f y. P f [] y) ∧
(∀f v4 v5. P f (v4::v5) []) ⇒
∀v v1 v2. P v v1 v2
- MAP2_def
-
|- (∀t2 t1 h2 h1 f. MAP2 f (h1::t1) (h2::t2) = f h1 h2::MAP2 f t1 t2) ∧
(∀y f. MAP2 f [] y = []) ∧ ∀v5 v4 f. MAP2 f (v4::v5) [] = []
- MAP2
-
|- (∀f. MAP2 f [] [] = []) ∧
∀f h1 t1 h2 t2. MAP2 f (h1::t1) (h2::t2) = f h1 h2::MAP2 f t1 t2
- NULL
-
|- NULL [] ∧ ∀h t. ¬NULL (h::t)
- list_INDUCT
-
|- ∀P. P [] ∧ (∀t. P t ⇒ ∀h. P (h::t)) ⇒ ∀l. P l
- list_Axiom
-
|- ∀f0 f1. ∃fn. (fn [] = f0) ∧ ∀a0 a1. fn (a0::a1) = f1 a0 a1 (fn a1)
- list_induction
-
|- ∀P. P [] ∧ (∀t. P t ⇒ ∀h. P (h::t)) ⇒ ∀l. P l
- LIST_REL_EL_EQN
-
|- ∀R l1 l2.
LIST_REL R l1 l2 ⇔
(LENGTH l1 = LENGTH l2) ∧ ∀n. n < LENGTH l1 ⇒ R (EL n l1) (EL n l2)
- LIST_REL_cases
-
|- ∀R a0 a1.
LIST_REL R a0 a1 ⇔
(a0 = []) ∧ (a1 = []) ∨
∃h1 h2 t1 t2. (a0 = h1::t1) ∧ (a1 = h2::t2) ∧ R h1 h2 ∧ LIST_REL R t1 t2
- LIST_REL_strongind
-
|- ∀R LIST_REL'.
LIST_REL' [] [] ∧
(∀h1 h2 t1 t2.
R h1 h2 ∧ LIST_REL R t1 t2 ∧ LIST_REL' t1 t2 ⇒
LIST_REL' (h1::t1) (h2::t2)) ⇒
∀a0 a1. LIST_REL R a0 a1 ⇒ LIST_REL' a0 a1
- LIST_REL_ind
-
|- ∀R LIST_REL'.
LIST_REL' [] [] ∧
(∀h1 h2 t1 t2. R h1 h2 ∧ LIST_REL' t1 t2 ⇒ LIST_REL' (h1::t1) (h2::t2)) ⇒
∀a0 a1. LIST_REL R a0 a1 ⇒ LIST_REL' a0 a1
- LIST_REL_rules
-
|- ∀R.
LIST_REL R [] [] ∧
∀h1 h2 t1 t2. R h1 h2 ∧ LIST_REL R t1 t2 ⇒ LIST_REL R (h1::t1) (h2::t2)
- list_CASES
-
|- ∀l. (l = []) ∨ ∃h t. l = h::t
- FORALL_LIST
-
|- (∀l. P l) ⇔ P [] ∧ ∀h t. P (h::t)
- MEM_SPLIT_APPEND_first
-
|- MEM e l ⇔ ∃pfx sfx. (l = pfx ++ [e] ++ sfx) ∧ ¬MEM e pfx
- MEM_SPLIT_APPEND_last
-
|- MEM e l ⇔ ∃pfx sfx. (l = pfx ++ [e] ++ sfx) ∧ ¬MEM e sfx
- APPEND_EQ_APPEND
-
|- (l1 ++ l2 = m1 ++ m2) ⇔
(∃l. (l1 = m1 ++ l) ∧ (m2 = l ++ l2)) ∨ ∃l. (m1 = l1 ++ l) ∧ (l2 = l ++ m2)
- APPEND_EQ_CONS
-
|- (l1 ++ l2 = h::t) ⇔
(l1 = []) ∧ (l2 = h::t) ∨ ∃lt. (l1 = h::lt) ∧ (t = lt ++ l2)
- APPEND_EQ_APPEND_MID
-
|- (l1 ++ [e] ++ l2 = m1 ++ m2) ⇔
(∃l. (m1 = l1 ++ [e] ++ l) ∧ (l2 = l ++ m2)) ∨
∃l. (l1 = m1 ++ l) ∧ (m2 = l ++ [e] ++ l2)
- LUPDATE_SEM
-
|- (∀e n l. LENGTH (LUPDATE e n l) = LENGTH l) ∧
∀e n l p.
p < LENGTH l ⇒ (EL p (LUPDATE e n l) = if p = n then e else EL p l)
- EL_LUPDATE
-
|- ∀ys x i k.
EL i (LUPDATE x k ys) = if (i = k) ∧ k < LENGTH ys then x else EL i ys
- LENGTH_LUPDATE
-
|- ∀x n ys. LENGTH (LUPDATE x n ys) = LENGTH ys
- LUPDATE_LENGTH
-
|- ∀xs x y ys. LUPDATE x (LENGTH xs) (xs ++ y::ys) = xs ++ x::ys
- LUPDATE_SNOC
-
|- ∀ys k x y.
LUPDATE x k (SNOC y ys) =
if k = LENGTH ys then SNOC x ys else SNOC y (LUPDATE x k ys)
- MEM_LUPDATE_E
-
|- ∀l x y i. MEM x (LUPDATE y i l) ⇒ (x = y) ∨ MEM x l
- MEM_LUPDATE
-
|- ∀l x y i.
MEM x (LUPDATE y i l) ⇔
i < LENGTH l ∧ (x = y) ∨ ∃j. j < LENGTH l ∧ i ≠ j ∧ (EL j l = x)
- LUPDATE_compute
-
|- (∀e n. LUPDATE e n [] = []) ∧ (∀e x l. LUPDATE e 0 (x::l) = e::l) ∧
(∀e n x l.
LUPDATE e (NUMERAL (BIT1 n)) (x::l) =
x::LUPDATE e (NUMERAL (BIT1 n) − 1) l) ∧
∀e n x l.
LUPDATE e (NUMERAL (BIT2 n)) (x::l) = x::LUPDATE e (NUMERAL (BIT1 n)) l
- LUPDATE_MAP
-
|- ∀x n l f. MAP f (LUPDATE x n l) = LUPDATE (f x) n (MAP f l)
- splitAtPki_APPEND
-
|- ∀l1 l2 P k.
EVERYi (λi. $~ o P i) l1 ∧ (0 < LENGTH l2 ⇒ P (LENGTH l1) (HD l2)) ⇒
(splitAtPki P k (l1 ++ l2) = k l1 l2)
- splitAtPki_EQN
-
|- splitAtPki P k l =
case OLEAST i. i < LENGTH l ∧ P i (EL i l) of
NONE => k l []
| SOME i => k (TAKE i l) (DROP i l)
- TAKE_LENGTH_TOO_LONG
-
|- ∀l n. LENGTH l ≤ n ⇒ (TAKE n l = l)
- DROP_LENGTH_TOO_LONG
-
|- ∀l n. LENGTH l ≤ n ⇒ (DROP n l = [])
- TAKE_splitAtPki
-
|- TAKE n l = splitAtPki (K o $= n) K l
- DROP_splitAtPki
-
|- DROP n l = splitAtPki (K o $= n) (K I) l
- LIST_BIND_THM
-
|- (LIST_BIND [] f = []) ∧ (LIST_BIND (h::t) f = f h ++ LIST_BIND t f)
- LIST_BIND_ID
-
|- (LIST_BIND l (λx. x) = FLAT l) ∧ (LIST_BIND l I = FLAT l)
- LIST_BIND_APPEND
-
|- LIST_BIND (l1 ++ l2) f = LIST_BIND l1 f ++ LIST_BIND l2 f
- LIST_BIND_MAP
-
|- LIST_BIND (MAP f l) g = LIST_BIND l (g o f)
- MAP_LIST_BIND
-
|- MAP f (LIST_BIND l g) = LIST_BIND l (MAP f o g)
- LIST_BIND_LIST_BIND
-
|- LIST_BIND (LIST_BIND l g) f = LIST_BIND l (combin$C LIST_BIND f o g)
- SINGL_LIST_APPLY_L
-
|- LIST_BIND [x] f = f x
- SINGL_LIST_APPLY_R
-
|- LIST_BIND l (λx. [x]) = l
- SINGL_APPLY_MAP
-
|- [f] <*> l = MAP f l
- SINGL_SINGL_APPLY
-
|- [f] <*> [x] = [f x]
- SINGL_APPLY_PERMUTE
-
|- fs <*> [x] = [(λf. f x)] <*> fs
- MAP_FLAT
-
|- MAP f (FLAT l) = FLAT (MAP (MAP f) l)
- LIST_APPLY_o
-
|- [$o] <*> fs <*> gs <*> xs = fs <*> (gs <*> xs)
- LLEX_THM
-
|- (¬LLEX R [] [] ∧ ¬LLEX R (h1::t1) []) ∧ LLEX R [] (h2::t2) ∧
(LLEX R (h1::t1) (h2::t2) ⇔ R h1 h2 ∨ (h1 = h2) ∧ LLEX R t1 t2)
- LLEX_MONO
-
|- (∀x y. R1 x y ⇒ R2 x y) ⇒ LLEX R1 x y ⇒ LLEX R2 x y
- LLEX_CONG
-
|- ∀R l1 l2 R' l1' l2'.
(l1 = l1') ∧ (l2 = l2') ∧
(∀a b. MEM a l1' ∧ MEM b l2' ⇒ (R a b ⇔ R' a b)) ⇒
(LLEX R l1 l2 ⇔ LLEX R' l1' l2')
- LLEX_NIL2
-
|- ¬LLEX R l []
- LLEX_transitive
-
|- transitive R ⇒ transitive (LLEX R)
- LLEX_total
-
|- total (RC R) ⇒ total (RC (LLEX R))
- LLEX_not_WF
-
|- (∃a b. R a b) ⇒ ¬WF (LLEX R)
- nub_set
-
|- ∀l. LIST_TO_SET (nub l) = LIST_TO_SET l
- all_distinct_nub
-
|- ∀l. ALL_DISTINCT (nub l)
- nub_append
-
|- ∀l1 l2. nub (l1 ++ l2) = nub (FILTER (λx. ¬MEM x l2) l1) ++ nub l2
- list_to_set_diff
-
|- ∀l1 l2.
LIST_TO_SET l2 DIFF LIST_TO_SET l1 =
LIST_TO_SET (FILTER (λx. ¬MEM x l1) l2)
- length_nub_append
-
|- ∀l1 l2.
LENGTH (nub (l1 ++ l2)) =
LENGTH (nub l1) + LENGTH (nub (FILTER (λx. ¬MEM x l1) l2))
- ALL_DISTINCT_DROP
-
|- ∀ls n. ALL_DISTINCT ls ⇒ ALL_DISTINCT (DROP n ls)
- EXISTS_LIST_EQ_MAP
-
|- ∀ls f. EVERY (λx. ∃y. x = f y) ls ⇒ ∃l. ls = MAP f l
- LIST_TO_SET_FLAT
-
|- ∀ls. LIST_TO_SET (FLAT ls) = BIGUNION (LIST_TO_SET (MAP LIST_TO_SET ls))
- MEM_APPEND_lemma
-
|- ∀a b c d x.
(a ++ [x] ++ b = c ++ [x] ++ d) ∧ ¬MEM x b ∧ ¬MEM x a ⇒ (a = c) ∧ (b = d)
- EVERY2_REVERSE
-
|- ∀R l1 l2. LIST_REL R l1 l2 ⇒ LIST_REL R (REVERSE l1) (REVERSE l2)
- SUM_MAP_PLUS
-
|- ∀f g ls. SUM (MAP (λx. f x + g x) ls) = SUM (MAP f ls) + SUM (MAP g ls)
- TAKE_LENGTH_ID_rwt
-
|- ∀l m. (m = LENGTH l) ⇒ (TAKE m l = l)
- ZIP_DROP
-
|- ∀a b n.
n ≤ LENGTH a ∧ (LENGTH a = LENGTH b) ⇒
(ZIP (DROP n a,DROP n b) = DROP n (ZIP (a,b)))
- GENLIST_EL
-
|- ∀ls f n.
(n = LENGTH ls) ∧ (∀i. i < n ⇒ (f i = EL i ls)) ⇒ (GENLIST f n = ls)
- EVERY2_trans
-
|- (∀x y z. R x y ∧ R y z ⇒ R x z) ⇒
∀x y z. LIST_REL R x y ∧ LIST_REL R y z ⇒ LIST_REL R x z
- EVERY2_sym
-
|- (∀x y. R1 x y ⇒ R2 y x) ⇒ ∀x y. LIST_REL R1 x y ⇒ LIST_REL R2 y x
- EVERY2_LUPDATE_same
-
|- ∀P l1 l2 v1 v2 n.
P v1 v2 ∧ LIST_REL P l1 l2 ⇒
LIST_REL P (LUPDATE v1 n l1) (LUPDATE v2 n l2)
- EVERY2_refl
-
|- (∀x. MEM x ls ⇒ R x x) ⇒ LIST_REL R ls ls
- EVERY2_THM
-
|- (∀P ys. LIST_REL P [] ys ⇔ (ys = [])) ∧
(∀P yys x xs.
LIST_REL P (x::xs) yys ⇔
∃y ys. (yys = y::ys) ∧ P x y ∧ LIST_REL P xs ys) ∧
(∀P xs. LIST_REL P xs [] ⇔ (xs = [])) ∧
∀P xxs y ys.
LIST_REL P xxs (y::ys) ⇔ ∃x xs. (xxs = x::xs) ∧ P x y ∧ LIST_REL P xs ys
- LIST_REL_trans
-
|- ∀l1 l2 l3.
(∀n.
n < LENGTH l1 ∧ R (EL n l1) (EL n l2) ∧ R (EL n l2) (EL n l3) ⇒
R (EL n l1) (EL n l3)) ∧ LIST_REL R l1 l2 ∧ LIST_REL R l2 l3 ⇒
LIST_REL R l1 l3
- SWAP_REVERSE
-
|- ∀l1 l2. (l1 = REVERSE l2) ⇔ (l2 = REVERSE l1)
- SWAP_REVERSE_SYM
-
|- ∀l1 l2. (REVERSE l1 = l2) ⇔ (l1 = REVERSE l2)
- BIGUNION_IMAGE_set_SUBSET
-
|- BIGUNION (IMAGE f (LIST_TO_SET ls)) ⊆ s ⇔ ∀x. MEM x ls ⇒ f x ⊆ s
- IMAGE_EL_count_LENGTH
-
|- ∀f ls.
IMAGE (λn. f (EL n ls)) (count (LENGTH ls)) = IMAGE f (LIST_TO_SET ls)
- GENLIST_EL_MAP
-
|- ∀f ls. GENLIST (λn. f (EL n ls)) (LENGTH ls) = MAP f ls
- LENGTH_FILTER_LEQ_MONO
-
|- ∀P Q. (∀x. P x ⇒ Q x) ⇒ ∀ls. LENGTH (FILTER P ls) ≤ LENGTH (FILTER Q ls)
- LIST_EQ_MAP_PAIR
-
|- ∀l1 l2. (MAP FST l1 = MAP FST l2) ∧ (MAP SND l1 = MAP SND l2) ⇒ (l1 = l2)
- TAKE_SUM
-
|- ∀n m l. n + m ≤ LENGTH l ⇒ (TAKE (n + m) l = TAKE n l ++ TAKE m (DROP n l))
- ALL_DISTINCT_FILTER_EL_IMP
-
|- ∀P l n1 n2.
ALL_DISTINCT (FILTER P l) ∧ n1 < LENGTH l ∧ n2 < LENGTH l ∧ P (EL n1 l) ∧
(EL n1 l = EL n2 l) ⇒
(n1 = n2)
- FLAT_EQ_NIL
-
|- ∀ls. (FLAT ls = []) ⇔ EVERY ($= []) ls
- ALL_DISTINCT_MAP_INJ
-
|- ∀ls f.
(∀x y. MEM x ls ∧ MEM y ls ∧ (f x = f y) ⇒ (x = y)) ∧ ALL_DISTINCT ls ⇒
ALL_DISTINCT (MAP f ls)
- LENGTH_o_REVERSE
-
|- (LENGTH o REVERSE = LENGTH) ∧ (LENGTH o REVERSE o f = LENGTH o f)
- REVERSE_o_REVERSE
-
|- REVERSE o REVERSE o f = f
- GENLIST_PLUS_APPEND
-
|- GENLIST ($+ a) n1 ++ GENLIST ($+ (n1 + a)) n2 = GENLIST ($+ a) (n1 + n2)
- LIST_TO_SET_GENLIST
-
|- ∀f n. LIST_TO_SET (GENLIST f n) = IMAGE f (count n)
- MEM_ZIP_MEM_MAP
-
|- (LENGTH (FST ps) = LENGTH (SND ps)) ∧ MEM p (ZIP ps) ⇒
MEM (FST p) (FST ps) ∧ MEM (SND p) (SND ps)
- DISJOINT_GENLIST_PLUS
-
|- DISJOINT x (LIST_TO_SET (GENLIST ($+ n) (a + b))) ⇒
DISJOINT x (LIST_TO_SET (GENLIST ($+ n) a)) ∧
DISJOINT x (LIST_TO_SET (GENLIST ($+ (n + a)) b))
- EVERY2_MAP
-
|- (LIST_REL P (MAP f l1) l2 ⇔ LIST_REL (λx y. P (f x) y) l1 l2) ∧
(LIST_REL Q l1 (MAP g l2) ⇔ LIST_REL (λx y. Q x (g y)) l1 l2)
- exists_list_GENLIST
-
|- (∃ls. P ls) ⇔ ∃n f. P (GENLIST f n)
- EVERY_MEM_MONO
-
|- ∀P Q l. (∀x. MEM x l ∧ P x ⇒ Q x) ∧ EVERY P l ⇒ EVERY Q l
- EVERY2_MEM_MONO
-
|- ∀P Q l1 l2.
(∀x. MEM x (ZIP (l1,l2)) ∧ UNCURRY P x ⇒ UNCURRY Q x) ∧
LIST_REL P l1 l2 ⇒
LIST_REL Q l1 l2
- mem_exists_set
-
|- ∀x y l. MEM (x,y) l ⇒ ∃z. (x = FST z) ∧ MEM z l
- every_zip_snd
-
|- ∀l1 l2 P.
(LENGTH l1 = LENGTH l2) ⇒
(EVERY (λx. P (SND x)) (ZIP (l1,l2)) ⇔ EVERY P l2)
- every_zip_fst
-
|- ∀l1 l2 P.
(LENGTH l1 = LENGTH l2) ⇒
(EVERY (λx. P (FST x)) (ZIP (l1,l2)) ⇔ EVERY P l1)
- el_append3
-
|- ∀l1 x l2. EL (LENGTH l1) (l1 ++ [x] ++ l2) = x
- lupdate_append
-
|- ∀x n l1 l2. n < LENGTH l1 ⇒ (LUPDATE x n (l1 ++ l2) = LUPDATE x n l1 ++ l2)
- lupdate_append2
-
|- ∀v l1 x l2 l3. LUPDATE v (LENGTH l1) (l1 ++ [x] ++ l2) = l1 ++ [v] ++ l2
- LAST_REVERSE
-
|- ∀ls. ls ≠ [] ⇒ (LAST (REVERSE ls) = HD ls)
- dropWhile_splitAtPki
-
|- ∀P. dropWhile P = splitAtPki (combin$C (K o $~ o P)) (K I)
- dropWhile_eq_nil
-
|- ∀P ls. (dropWhile P ls = []) ⇔ EVERY P ls
- MEM_dropWhile_IMP
-
|- ∀P ls x. MEM x (dropWhile P ls) ⇒ MEM x ls
- HD_dropWhile
-
|- ∀P ls. EXISTS ($~ o P) ls ⇒ ¬P (HD (dropWhile P ls))
- LENGTH_dropWhile_LESS_EQ
-
|- ∀P ls. LENGTH (dropWhile P ls) ≤ LENGTH ls
- dropWhile_APPEND_EVERY
-
|- ∀P l1 l2. EVERY P l1 ⇒ (dropWhile P (l1 ++ l2) = dropWhile P l2)
- dropWhile_APPEND_EXISTS
-
|- ∀P l1 l2.
EXISTS ($~ o P) l1 ⇒ (dropWhile P (l1 ++ l2) = dropWhile P l1 ++ l2)
- EL_LENGTH_dropWhile_REVERSE
-
|- ∀P ls k.
LENGTH (dropWhile P (REVERSE ls)) ≤ k ∧ k < LENGTH ls ⇒ P (EL k ls)
- LENGTH_TAKE_EQ
-
|- LENGTH (TAKE n xs) = if n ≤ LENGTH xs then n else LENGTH xs
- IMP_EVERY_LUPDATE
-
|- ∀xs h i. P h ∧ EVERY P xs ⇒ EVERY P (LUPDATE h i xs)
- MAP_APPEND_MAP_EQ
-
|- ∀xs ys.
(MAP f1 xs ++ MAP g1 ys = MAP f2 xs ++ MAP g2 ys) ⇔
(MAP f1 xs = MAP f2 xs) ∧ (MAP g1 ys = MAP g2 ys)
- LUPDATE_SOME_MAP
-
|- ∀xs n f h.
LUPDATE (SOME (f h)) n (MAP (OPTION_MAP f) xs) =
MAP (OPTION_MAP f) (LUPDATE (SOME h) n xs)
- ZIP_EQ_NIL
-
|- ∀l1 l2.
(LENGTH l1 = LENGTH l2) ⇒ ((ZIP (l1,l2) = []) ⇔ (l1 = []) ∧ (l2 = []))
- LUPDATE_SAME
-
|- ∀n ls. n < LENGTH ls ⇒ (LUPDATE (EL n ls) n ls = ls)
- LAST_compute
-
|- (∀x. LAST [x] = x) ∧ ∀h1 h2 t. LAST (h1::h2::t) = LAST (h2::t)
- TAKE_compute
-
|- (∀l. TAKE 0 l = []) ∧ (∀n. TAKE (NUMERAL (BIT1 n)) [] = []) ∧
(∀n. TAKE (NUMERAL (BIT2 n)) [] = []) ∧
(∀n h t.
TAKE (NUMERAL (BIT1 n)) (h::t) = h::TAKE (NUMERAL (BIT1 n) − 1) t) ∧
∀n h t. TAKE (NUMERAL (BIT2 n)) (h::t) = h::TAKE (NUMERAL (BIT1 n)) t
- DROP_compute
-
|- (∀l. DROP 0 l = l) ∧ (∀n. DROP (NUMERAL (BIT1 n)) [] = []) ∧
(∀n. DROP (NUMERAL (BIT2 n)) [] = []) ∧
(∀n h t. DROP (NUMERAL (BIT1 n)) (h::t) = DROP (NUMERAL (BIT1 n) − 1) t) ∧
∀n h t. DROP (NUMERAL (BIT2 n)) (h::t) = DROP (NUMERAL (BIT1 n)) t