PALPHA_CONV : term -> conv
STRUCTURE
LIBRARY
pair
SYNOPSIS
Renames the bound variables of a paired lambda-abstraction.
DESCRIPTION
If q is a variable of type ty and \p.t is a paired abstraction in which the bound pair p also has type ty, then ALPHA_CONV q "\p.t" returns the theorem:
   |- (\p.t) = (\q'. t[q'/p])
where the pair q':ty is a primed variant of q chosen so that none of its components are free in \p.t. The pairs p and q need not have the same structure, but they must be of the same type.
EXAMPLE
PALPHA_CONV renames the variables in a bound pair:
   - PALPHA_CONV
       (Term `((w:'a,x:'a),(y:'a,z:'a))`)
       (Term `\((a:'a,b:'a),(c:'a,d:'a)). (f a b c d):'a`);
   > val it = |- (\((a,b),c,d). f a b c d) = (\((w,x),y,z). f w x y z) : thm

The new bound pair and the old bound pair need not have the same structure.

   - PALPHA_CONV
       (Term `((wx:'a#'a),(y:'a,z:'a))`)
       (Term `\((a:'a,b:'a),(c:'a,d:'a)). (f a b c d):'a`);
   > val it = |- (\((a,b),c,d). f a b c d) =
                 (\(wx,y,z). f (FST wx) (SND wx) y z) : thm
PALPHA_CONV recognises subpairs of a pair as variables and preserves structure accordingly.
   - PALPHA_CONV
      (Term `((wx:'a#'a),(y:'a,z:'a))`)
      (Term `\((a:'a,b:'a),(c:'a,d:'a)). (f (a,b) c d):'a`);
   > val it = |- (\((a,b),c,d). f (a,b) c d) = (\(wx,y,z). f wx y z) : thm

COMMENTS
PALPHA_CONV will only ever add the terms FST and SND, i.e., it will never remove them. This means that while \(x,y). x + y can be converted to \xy. (FST xy) + (SND xy), it can not be converted back again.
FAILURE
PALPHA_CONV q tm fails if q is not a variable, if tm is not an abstraction, or if q is a variable and tm is the lambda abstraction \p.t but the types of p and q differ.
SEEALSO
HOL  Kananaskis-13