Structure PairRules
signature PairRules =
sig
include Abbrev
val MK_PAIR : thm * thm -> thm
val PABS : term -> thm -> thm
val PABS_CONV : conv -> conv
val PSUB_CONV : conv -> conv
val CURRY_CONV : conv
val UNCURRY_CONV : conv
val PBETA_CONV : conv
val PBETA_RULE : thm -> thm
val PBETA_TAC : tactic
val RIGHT_PBETA : thm -> thm
val LIST_PBETA_CONV : conv
val RIGHT_LIST_PBETA : thm -> thm
val LEFT_PBETA : thm -> thm
val LEFT_LIST_PBETA : thm -> thm
val UNPBETA_CONV : term -> conv
val PETA_CONV : conv
val PALPHA_CONV : term -> conv
val GEN_PALPHA_CONV : term -> conv
val PALPHA : term -> term -> thm
val paconv : term -> term -> bool
val PAIR_CONV : conv -> conv
val NOT_PFORALL_CONV : conv
val NOT_PEXISTS_CONV : conv
val PEXISTS_NOT_CONV : conv
val PFORALL_NOT_CONV : conv
val PFORALL_AND_CONV : conv
val PEXISTS_OR_CONV : conv
val AND_PFORALL_CONV : conv
val LEFT_AND_PFORALL_CONV : conv
val RIGHT_AND_PFORALL_CONV : conv
val OR_PEXISTS_CONV : conv
val LEFT_OR_PEXISTS_CONV : conv
val RIGHT_OR_PEXISTS_CONV : conv
val PEXISTS_AND_CONV : conv
val AND_PEXISTS_CONV : conv
val LEFT_AND_PEXISTS_CONV : conv
val RIGHT_AND_PEXISTS_CONV : conv
val PFORALL_OR_CONV : conv
val OR_PFORALL_CONV : conv
val LEFT_OR_PFORALL_CONV : conv
val RIGHT_OR_PFORALL_CONV : conv
val PFORALL_IMP_CONV : conv
val LEFT_IMP_PEXISTS_CONV : conv
val RIGHT_IMP_PFORALL_CONV : conv
val PEXISTS_IMP_CONV : conv
val LEFT_IMP_PFORALL_CONV : conv
val RIGHT_IMP_PEXISTS_CONV : conv
val CURRY_FORALL_CONV : conv
val CURRY_EXISTS_CONV : conv
val UNCURRY_FORALL_CONV : conv
val UNCURRY_EXISTS_CONV : conv
val PSPEC : term -> thm -> thm
val PSPECL : term list -> thm -> thm
val IPSPEC : term -> thm -> thm
val IPSPECL : term list -> thm -> thm
val PSPEC_PAIR : thm -> term * thm
val PSPEC_ALL : thm -> thm
val GPSPEC : thm -> thm
val PSPEC_TAC : term * term -> tactic
val PGEN : term -> thm -> thm
val PGENL : term list -> thm -> thm
val P_PGEN_TAC : term -> tactic
val PGEN_TAC : tactic
val FILTER_PGEN_TAC : term -> tactic
val PEXISTS_CONV : conv
val PSELECT_RULE : thm -> thm
val PSELECT_CONV : conv
val PEXISTS_RULE : thm -> thm
val PSELECT_INTRO : thm -> thm
val PSELECT_ELIM : thm -> term * thm -> thm
val PEXISTS : term * term -> thm -> thm
val PCHOOSE : term * thm -> thm -> thm
val P_PCHOOSE_THEN : term -> thm_tactical
val PCHOOSE_THEN : thm_tactical
val P_PCHOOSE_TAC : term -> thm_tactic
val PCHOOSE_TAC : thm_tactic
val PEXISTS_TAC : term -> tactic
val PEXISTENCE : thm -> thm
val PEXISTS_UNIQUE_CONV : conv
val P_PSKOLEM_CONV : term -> conv
val PSKOLEM_CONV : conv
val PSTRIP_THM_THEN : thm_tactical
val PSTRIP_ASSUME_TAC : thm_tactic
val PSTRUCT_CASES_TAC : thm_tactic
val PSTRIP_GOAL_THEN : thm_tactic -> tactic
val FILTER_PSTRIP_THEN : thm_tactic -> term -> tactic
val PSTRIP_TAC : tactic
val FILTER_PSTRIP_TAC : term -> tactic
val PEXT : thm -> thm
val P_FUN_EQ_CONV : term -> conv
val MK_PABS : thm -> thm
val HALF_MK_PABS : thm -> thm
val MK_PFORALL : thm -> thm
val MK_PEXISTS : thm -> thm
val MK_PSELECT : thm -> thm
val PFORALL_EQ : term -> thm -> thm
val PEXISTS_EQ : term -> thm -> thm
val PSELECT_EQ : term -> thm -> thm
val LIST_MK_PFORALL : term list -> thm -> thm
val LIST_MK_PEXISTS : term list -> thm -> thm
val PEXISTS_IMP : term -> thm -> thm
val SWAP_PFORALL_CONV : conv
val SWAP_PEXISTS_CONV : conv
val PART_PMATCH : (term -> term) -> thm -> term -> thm
val PMATCH_MP_TAC : thm_tactic
val PMATCH_MP : thm -> thm -> thm
val pvariant : term list -> term -> term
end
HOL 4, Kananaskis-13