- W_THM
-
⊢ ∀f x. W f x = f x x
- UPDATE_EQ
-
⊢ ∀f a b c. f⦇a ↦ c; a ↦ b⦈ = f⦇a ↦ c⦈
- UPDATE_COMMUTES
-
⊢ ∀f a b c d. a ≠ b ⇒ (f⦇a ↦ c; b ↦ d⦈ = f⦇b ↦ d; a ↦ c⦈)
- UPDATE_APPLY_IMP_ID
-
⊢ ∀f b a. (f a = b) ⇒ (f⦇a ↦ b⦈ = f)
- UPDATE_APPLY_ID
-
⊢ ∀f a b. (f a = b) ⇔ (f⦇a ↦ b⦈ = f)
- UPDATE_APPLY
-
⊢ (∀a x f. f⦇a ↦ x⦈ a = x) ∧ ∀a b x f. a ≠ b ⇒ (f⦇a ↦ x⦈ b = f b)
- UPD_SAME_KEY_UNWIND
-
⊢ ∀f1 f2 a b c. (f1⦇a ↦ b⦈ = f2⦇a ↦ c⦈) ⇒ (b = c) ∧ ∀v. f1⦇a ↦ v⦈ = f2⦇a ↦ v⦈
- UPD11_SAME_KEY_AND_BASE
-
⊢ ∀f a b c. (f⦇a ↦ b⦈ = f⦇a ↦ c⦈) ⇔ (b = c)
- UPD11_SAME_BASE
-
⊢ ∀f a b c d.
(f⦇a ↦ c⦈ = f⦇b ↦ d⦈) ⇔
(a = b) ∧ (c = d) ∨ a ≠ b ∧ (f⦇a ↦ c⦈ = f) ∧ (f⦇b ↦ d⦈ = f)
- SAME_KEY_UPDATE_DIFFER
-
⊢ ∀f1 f2 a b c. b ≠ c ⇒ f⦇a ↦ b⦈ ≠ f⦇a ↦ c⦈
- S_THM
-
⊢ ∀f g x. S f g x = f x (g x)
- S_ABS_R
-
⊢ S f (λx. g x) = (λx. f x (g x))
- S_ABS_L
-
⊢ S (λx. f x) g = (λx. f x (g x))
- o_THM
-
⊢ ∀f g x. (f ∘ g) x = f (g x)
- o_ASSOC
-
⊢ ∀f g h. f ∘ g ∘ h = (f ∘ g) ∘ h
- o_ABS_R
-
⊢ f ∘ (λx. g x) = (λx. f (g x))
- o_ABS_L
-
⊢ (λx. f x) ∘ g = (λx. f (g x))
- MONOID_DISJ_F
-
⊢ MONOID $\/ F
- MONOID_CONJ_T
-
⊢ MONOID $/\ T
- literal_case_FORALL_ELIM
-
⊢ literal_case f v ⇔ $! (S ($==> ∘ Abbrev ∘ combin$C $= v) f)
- LET_FORALL_ELIM
-
⊢ LET f v ⇔ $! (S ($==> ∘ Abbrev ∘ combin$C $= v) f)
- K_THM
-
⊢ ∀x y. K x y = x
- K_o_THM
-
⊢ (∀f v. K v ∘ f = K v) ∧ ∀f v. f ∘ K v = K (f v)
- I_THM
-
⊢ ∀x. I x = x
- I_o_ID
-
⊢ ∀f. (I ∘ f = f) ∧ (f ∘ I = f)
- GEN_literal_case_RATOR
-
⊢ literal_case f v x = literal_case (combin$C f x) v
- GEN_literal_case_RAND
-
⊢ P (literal_case f v) = literal_case (P ∘ f) v
- GEN_LET_RATOR
-
⊢ LET f v x = LET (combin$C f x) v
- GEN_LET_RAND
-
⊢ P (LET f v) = LET (P ∘ f) v
- FCOMM_ASSOC
-
⊢ ∀f. FCOMM f f ⇔ ASSOC f
- FAIL_THM
-
⊢ FAIL x y = x
- C_THM
-
⊢ ∀f x y. combin$C f x y = f y x
- C_ABS_L
-
⊢ combin$C (λx. f x) y = (λx. f x y)
- ASSOC_SYM
-
⊢ ∀f. ASSOC f ⇔ ∀x y z. f (f x y) z = f x (f y z)
- ASSOC_DISJ
-
⊢ ASSOC $\/
- ASSOC_CONJ
-
⊢ ASSOC $/\
- APPLY_UPDATE_THM
-
⊢ ∀f a b c. f⦇a ↦ b⦈ c = if a = c then b else f c
- APPLY_UPDATE_ID
-
⊢ ∀f a. f⦇a ↦ f a⦈ = f