Theory "one"

Parents     sat   combin

Signature

Type Arity
one 0
Constant Type
one :unit
one_CASE :unit -> α -> α

Definitions

one_TY_DEF
⊢ ∃rep. TYPE_DEFINITION (λb. b) rep
one_DEF
⊢ () = @x. T
one_case_def
⊢ ∀u x. one_CASE u x = x


Theorems

one_prim_rec
⊢ ∀e. ∃fn. fn () = e
one_induction
⊢ ∀P. P () ⇒ ∀x. P x
one_case_thm
⊢ ∀x. one_CASE () x = x
one_Axiom
⊢ ∀e. ∃!fn. fn () = e
one_axiom
⊢ ∀f g. f = g
one
⊢ ∀v. v = ()
FORALL_ONE
⊢ (∀x. P x) ⇔ P ()