- CLOSEST_IN_SET
-
⊢ ∀v p x s. FINITE s ⇒ s ≠ ∅ ⇒ closest v p s x ∈ s
- CLOSEST_IS_CLOSEST
-
⊢ ∀v p x s. FINITE s ⇒ s ≠ ∅ ⇒ is_closest v s x (closest v p s x)
- CLOSEST_IS_EVERYTHING
-
⊢ ∀v p s x.
FINITE s ⇒
s ≠ ∅ ⇒
is_closest v s x (closest v p s x) ∧
((∃b. is_closest v s x b ∧ p b) ⇒ p (closest v p s x))
- DEFLOAT_FLOAT_ROUND
-
⊢ ∀x. defloat (float (round float_format To_nearest x)) =
round float_format To_nearest x
- DEFLOAT_FLOAT_ZEROSIGN_ROUND
-
⊢ ∀x b.
defloat
(float (zerosign float_format b (round float_format To_nearest x))) =
zerosign float_format b (round float_format To_nearest x)
- DEFLOAT_FLOAT_ZEROSIGN_ROUND_FINITE
-
⊢ ∀b x.
abs x < threshold float_format ⇒
is_finite float_format
(defloat
(float (zerosign float_format b (round float_format To_nearest x))))
- ERROR_BOUND_NORM_STRONG
-
⊢ ∀x j.
abs x < threshold float_format ∧ abs x < 2 pow SUC j / 2 pow 126 ⇒
abs (error x) ≤ 2 pow j / 2 pow 150
- ERROR_BOUND_NORM_STRONG_NORMALIZE
-
⊢ ∀x. normalizes x ⇒ ∃j. abs (error x) ≤ 2 pow j / 2 pow 150
- ERROR_IS_ZERO
-
⊢ ∀a x. Finite a ∧ (Val a = x) ⇒ (error x = 0)
- EXPONENT
-
⊢ ∀a. exponent a = FST (SND a)
- FLOAT_ADD
-
⊢ ∀a b.
Finite a ∧ Finite b ∧ abs (Val a + Val b) < threshold float_format ⇒
Finite (a + b) ∧ (Val (a + b) = Val a + Val b + error (Val a + Val b))
- FLOAT_ADD_FINITE
-
⊢ ∀b a.
Finite a ∧ Finite b ∧ abs (Val a + Val b) < threshold float_format ⇒
Finite (a + b)
- FLOAT_ADD_RELATIVE
-
⊢ ∀a b.
Finite a ∧ Finite b ∧ normalizes (Val a + Val b) ⇒
Finite (a + b) ∧
∃e. abs e ≤ 1 / 2 pow 24 ∧ (Val (a + b) = (Val a + Val b) * (1 + e))
- FLOAT_CASES
-
⊢ ∀a. Isnan a ∨ Infinity a ∨ Isnormal a ∨ Isdenormal a ∨ Iszero a
- FLOAT_CASES_FINITE
-
⊢ ∀a. Isnan a ∨ Infinity a ∨ Finite a
- FLOAT_DISTINCT
-
⊢ ∀a. ¬(Isnan a ∧ Infinity a) ∧ ¬(Isnan a ∧ Isnormal a) ∧
¬(Isnan a ∧ Isdenormal a) ∧ ¬(Isnan a ∧ Iszero a) ∧
¬(Infinity a ∧ Isnormal a) ∧ ¬(Infinity a ∧ Isdenormal a) ∧
¬(Infinity a ∧ Iszero a) ∧ ¬(Isnormal a ∧ Isdenormal a) ∧
¬(Isnormal a ∧ Iszero a) ∧ ¬(Isdenormal a ∧ Iszero a)
- FLOAT_DISTINCT_FINITE
-
⊢ ∀a. ¬(Isnan a ∧ Infinity a) ∧ ¬(Isnan a ∧ Finite a) ∧
¬(Infinity a ∧ Finite a)
- FLOAT_DIV
-
⊢ ∀a b.
Finite a ∧ Finite b ∧ ¬Iszero b ∧
abs (Val a / Val b) < threshold float_format ⇒
Finite (a / b) ∧ (Val (a / b) = Val a / Val b + error (Val a / Val b))
- FLOAT_DIV_RELATIVE
-
⊢ ∀a b.
Finite a ∧ Finite b ∧ ¬Iszero b ∧ normalizes (Val a / Val b) ⇒
Finite (a / b) ∧
∃e. abs e ≤ 1 / 2 pow 24 ∧ (Val (a / b) = Val a / Val b * (1 + e))
- FLOAT_EQ
-
⊢ ∀a b. Finite a ∧ Finite b ⇒ (a == b ⇔ (Val a = Val b))
- FLOAT_EQ_REFL
-
⊢ ∀a. a == a ⇔ ¬Isnan a
- FLOAT_GE
-
⊢ ∀a b. Finite a ∧ Finite b ⇒ (a ≥ b ⇔ Val a ≥ Val b)
- FLOAT_GT
-
⊢ ∀a b. Finite a ∧ Finite b ⇒ (a > b ⇔ Val a > Val b)
- FLOAT_INFINITES_DISTINCT
-
⊢ ∀a. ¬(a == Plus_infinity ∧ a == Minus_infinity)
- FLOAT_INFINITIES
-
⊢ ∀a. Infinity a ⇔ a == Plus_infinity ∨ a == Minus_infinity
- FLOAT_INFINITIES_SIGNED
-
⊢ (sign (defloat Plus_infinity) = 0) ∧ (sign (defloat Minus_infinity) = 1)
- FLOAT_LARGEST_EXPLICIT
-
⊢ largest float_format = 340282346638528859811704183484516925440
- FLOAT_LE
-
⊢ ∀a b. Finite a ∧ Finite b ⇒ (a ≤ b ⇔ Val a ≤ Val b)
- FLOAT_LT
-
⊢ ∀a b. Finite a ∧ Finite b ⇒ (a < b ⇔ Val a < Val b)
- FLOAT_MUL
-
⊢ ∀a b.
Finite a ∧ Finite b ∧ abs (Val a * Val b) < threshold float_format ⇒
Finite (a * b) ∧ (Val (a * b) = Val a * Val b + error (Val a * Val b))
- FLOAT_MUL_FINITE
-
⊢ ∀b a.
Finite a ∧ Finite b ∧ abs (Val a * Val b) < threshold float_format ⇒
Finite (a * b)
- FLOAT_MUL_RELATIVE
-
⊢ ∀a b.
Finite a ∧ Finite b ∧ normalizes (Val a * Val b) ⇒
Finite (a * b) ∧
∃e. abs e ≤ 1 / 2 pow 24 ∧ (Val (a * b) = Val a * Val b * (1 + e))
- FLOAT_SUB
-
⊢ ∀a b.
Finite a ∧ Finite b ∧ abs (Val a − Val b) < threshold float_format ⇒
Finite (a − b) ∧ (Val (a − b) = Val a − Val b + error (Val a − Val b))
- FLOAT_SUB_FINITE
-
⊢ ∀b a.
Finite a ∧ Finite b ∧ abs (Val a − Val b) < threshold float_format ⇒
Finite (a − b)
- FLOAT_SUB_RELATIVE
-
⊢ ∀a b.
Finite a ∧ Finite b ∧ normalizes (Val a − Val b) ⇒
Finite (a − b) ∧
∃e. abs e ≤ 1 / 2 pow 24 ∧ (Val (a − b) = (Val a − Val b) * (1 + e))
- FLOAT_THRESHOLD_EXPLICIT
-
⊢ threshold float_format = 340282356779733661637539395458142568448
- FRACTION
-
⊢ ∀a. fraction a = SND (SND a)
- INFINITY_IS_INFINITY
-
⊢ Infinity Plus_infinity ∧ Infinity Minus_infinity
- INFINITY_NOT_NAN
-
⊢ ¬Isnan Plus_infinity ∧ ¬Isnan Minus_infinity
- ISFINITE
-
⊢ ∀a. Finite a ⇔ is_finite float_format (defloat a)
- IS_CLOSEST_EXISTS
-
⊢ ∀v x s. FINITE s ⇒ s ≠ ∅ ⇒ ∃a. is_closest v s x a
- IS_FINITE_CLOSEST
-
⊢ ∀X v p x. is_finite X (closest v p {a | is_finite X a} x)
- IS_FINITE_EXPLICIT
-
⊢ ∀a. is_finite float_format a ⇔
sign a < 2 ∧ exponent a < 255 ∧ fraction a < 8388608
- IS_FINITE_FINITE
-
⊢ ∀X. FINITE {a | is_finite X a}
- IS_FINITE_NONEMPTY
-
⊢ {a | is_finite X a} ≠ ∅
- IS_VALID
-
⊢ ∀X a.
is_valid X a ⇔
sign a < 2 ∧ exponent a < 2 ** expwidth X ∧ fraction a < 2 ** fracwidth X
- IS_VALID_CLOSEST
-
⊢ ∀X v p x. is_valid X (closest v p {a | is_finite X a} x)
- IS_VALID_DEFLOAT
-
⊢ ∀a. is_valid float_format (defloat a)
- IS_VALID_FINITE
-
⊢ FINITE {a | is_valid X a}
- IS_VALID_NONEMPTY
-
⊢ {a | is_valid X a} ≠ ∅
- IS_VALID_ROUND
-
⊢ ∀X x. is_valid X (round X To_nearest x)
- IS_VALID_SPECIAL
-
⊢ ∀X. is_valid X (minus_infinity X) ∧ is_valid X (plus_infinity X) ∧
is_valid X (topfloat X) ∧ is_valid X (bottomfloat X) ∧
is_valid X (plus_zero X) ∧ is_valid X (minus_zero X)
- REAL_IN_BINADE
-
⊢ ∀x. normalizes x ⇒
∃j. j ≤ emax float_format − 2 ∧ 2 pow j / 2 pow 126 ≤ abs x ∧
abs x < 2 pow SUC j / 2 pow 126
- RELATIVE_ERROR
-
⊢ ∀x. normalizes x ⇒
∃e. abs e ≤ 1 / 2 pow 24 ∧
(Val (float (round float_format To_nearest x)) = x * (1 + e))
- SIGN
-
⊢ ∀a. sign a = FST a
- VALOF
-
⊢ ∀X a.
valof X a =
if exponent a = 0 then
-1 pow sign a * (2 / 2 pow bias X) * (&fraction a / 2 pow fracwidth X)
else
-1 pow sign a * (2 pow exponent a / 2 pow bias X) *
(1 + &fraction a / 2 pow fracwidth X)
- VALOF_DEFLOAT_FLOAT_ZEROSIGN_ROUND
-
⊢ ∀x b.
valof float_format
(defloat
(float (zerosign float_format b (round float_format To_nearest x)))) =
valof float_format (round float_format To_nearest x)
- VAL_FINITE
-
⊢ ∀a. Finite a ⇒ abs (Val a) ≤ largest float_format
- VAL_THRESHOLD
-
⊢ ∀a. Finite a ⇒ abs (Val a) < threshold float_format
- ZERO_IS_ZERO
-
⊢ Iszero Plus_zero ∧ Iszero Minus_zero
- ZERO_NOT_NAN
-
⊢ ¬Isnan Plus_zero ∧ ¬Isnan Minus_zero