- Exponent
-
⊢ ∀a. Exponent a = exponent (defloat a)
- Finite
-
⊢ ∀a. Finite a ⇔ Isnormal a ∨ Isdenormal a ∨ Iszero a
- Float
-
⊢ ∀x. Float x = float (round float_format To_nearest x)
- Fraction
-
⊢ ∀a. Fraction a = fraction (defloat a)
- Infinity
-
⊢ ∀a. Infinity a ⇔ is_infinity float_format (defloat a)
- Isdenormal
-
⊢ ∀a. Isdenormal a ⇔ is_denormal float_format (defloat a)
- Isintegral
-
⊢ ∀a. Isintegral a ⇔ is_integral float_format (defloat a)
- Isnan
-
⊢ ∀a. Isnan a ⇔ is_nan float_format (defloat a)
- Isnormal
-
⊢ ∀a. Isnormal a ⇔ is_normal float_format (defloat a)
- Iszero
-
⊢ ∀a. Iszero a ⇔ is_zero float_format (defloat a)
- Minus_infinity
-
⊢ Minus_infinity = float (minus_infinity float_format)
- Minus_zero
-
⊢ Minus_zero = float (minus_zero float_format)
- Plus_infinity
-
⊢ Plus_infinity = float (plus_infinity float_format)
- Plus_zero
-
⊢ Plus_zero = float (plus_zero float_format)
- ROUNDFLOAT
-
⊢ ∀a. ROUNDFLOAT a = float (fintrnd float_format To_nearest (defloat a))
- Sign
-
⊢ ∀a. Sign a = sign (defloat a)
- Ulp
-
⊢ ∀a. Ulp a = ulp float_format (defloat a)
- Val
-
⊢ ∀a. Val a = valof float_format (defloat a)
- bias
-
⊢ ∀X. bias X = 2 ** (expwidth X − 1) − 1
- bottomfloat
-
⊢ ∀X. bottomfloat X = (1,emax X − 1,2 ** fracwidth X − 1)
- ccode_BIJ
-
⊢ (∀a. num2ccode (ccode2num a) = a) ∧
∀r. (λn. n < 4) r ⇔ (ccode2num (num2ccode r) = r)
- ccode_CASE
-
⊢ ∀x v0 v1 v2 v3.
(case x of Gt => v0 | Lt => v1 | Eq => v2 | Un => v3) =
(λm. if m < 1 then v0 else if m < 2 then v1 else if m = 2 then v2 else v3)
(ccode2num x)
- ccode_TY_DEF
-
⊢ ∃rep. TYPE_DEFINITION (λn. n < 4) rep
- ccode_size_def
-
⊢ ∀x. ccode_size x = 0
- closest
-
⊢ ∀v p s x.
closest v p s x =
@a. is_closest v s x a ∧ ((∃b. is_closest v s x b ∧ p b) ⇒ p a)
- emax
-
⊢ ∀X. emax X = 2 ** expwidth X − 1
- encoding
-
⊢ ∀X s e f.
encoding X (s,e,f) =
s * 2 ** (wordlength X − 1) + e * 2 ** fracwidth X + f
- exponent
-
⊢ ∀s e f. exponent (s,e,f) = e
- expwidth
-
⊢ ∀ew fw. expwidth (ew,fw) = ew
- fadd
-
⊢ ∀X m a b.
fadd X m a b =
if
is_nan X a ∨ is_nan X b ∨
is_infinity X a ∧ is_infinity X b ∧ sign a ≠ sign b
then
some_nan X
else if is_infinity X a then a
else if is_infinity X b then b
else
zerosign X
(if is_zero X a ∧ is_zero X b ∧ (sign a = sign b) then sign a
else if m = To_ninfinity then 1
else 0) (round X m (valof X a + valof X b))
- fcompare
-
⊢ ∀X a b.
fcompare X a b =
if is_nan X a ∨ is_nan X b then Un
else if is_infinity X a ∧ (sign a = 1) then
if is_infinity X b ∧ (sign b = 1) then Eq else Lt
else if is_infinity X a ∧ (sign a = 0) then
if is_infinity X b ∧ (sign b = 0) then Eq else Gt
else if is_infinity X b ∧ (sign b = 1) then Gt
else if is_infinity X b ∧ (sign b = 0) then Lt
else if valof X a < valof X b then Lt
else if valof X a = valof X b then Eq
else Gt
- fdiv
-
⊢ ∀X m a b.
fdiv X m a b =
if
is_nan X a ∨ is_nan X b ∨ is_zero X a ∧ is_zero X b ∨
is_infinity X a ∧ is_infinity X b
then
some_nan X
else if is_infinity X a ∨ is_zero X b then
if sign a = sign b then plus_infinity X else minus_infinity X
else if is_infinity X b then
if sign a = sign b then plus_zero X else minus_zero X
else
zerosign X (if sign a = sign b then 0 else 1)
(round X m (valof X a / valof X b))
- feq
-
⊢ ∀X a b. feq X a b ⇔ (fcompare X a b = Eq)
- fge
-
⊢ ∀X a b. fge X a b ⇔ (fcompare X a b = Gt) ∨ (fcompare X a b = Eq)
- fgt
-
⊢ ∀X a b. fgt X a b ⇔ (fcompare X a b = Gt)
- fintrnd
-
⊢ ∀X m a.
fintrnd X m a =
if is_nan X a then some_nan X
else if is_infinity X a then a
else zerosign X (sign a) (intround X m (valof X a))
- fle
-
⊢ ∀X a b. fle X a b ⇔ (fcompare X a b = Lt) ∨ (fcompare X a b = Eq)
- float_TY_DEF
-
⊢ ∃rep. TYPE_DEFINITION (is_valid float_format) rep
- float_abs
-
⊢ ∀a. float_abs a = if a ≥ Plus_zero then a else ~a
- float_add
-
⊢ ∀a b. a + b = float (fadd float_format To_nearest (defloat a) (defloat b))
- float_div
-
⊢ ∀a b. a / b = float (fdiv float_format To_nearest (defloat a) (defloat b))
- float_eq
-
⊢ ∀a b. a == b ⇔ feq float_format (defloat a) (defloat b)
- float_format
-
⊢ float_format = (8,23)
- float_ge
-
⊢ ∀a b. a ≥ b ⇔ fge float_format (defloat a) (defloat b)
- float_gt
-
⊢ ∀a b. a > b ⇔ fgt float_format (defloat a) (defloat b)
- float_le
-
⊢ ∀a b. a ≤ b ⇔ fle float_format (defloat a) (defloat b)
- float_lt
-
⊢ ∀a b. a < b ⇔ flt float_format (defloat a) (defloat b)
- float_mul
-
⊢ ∀a b. a * b = float (fmul float_format To_nearest (defloat a) (defloat b))
- float_neg
-
⊢ ∀a. ~a = float (fneg float_format To_nearest (defloat a))
- float_rem
-
⊢ ∀a b.
a float_rem b =
float (frem float_format To_nearest (defloat a) (defloat b))
- float_sqrt
-
⊢ ∀a. float_sqrt a = float (fsqrt float_format To_nearest (defloat a))
- float_sub
-
⊢ ∀a b. a − b = float (fsub float_format To_nearest (defloat a) (defloat b))
- float_tybij
-
⊢ (∀a. float (defloat a) = a) ∧
∀r. is_valid float_format r ⇔ (defloat (float r) = r)
- flt
-
⊢ ∀X a b. flt X a b ⇔ (fcompare X a b = Lt)
- fmul
-
⊢ ∀X m a b.
fmul X m a b =
if
is_nan X a ∨ is_nan X b ∨ is_zero X a ∧ is_infinity X b ∨
is_infinity X a ∧ is_zero X b
then
some_nan X
else if is_infinity X a ∨ is_infinity X b then
if sign a = sign b then plus_infinity X else minus_infinity X
else
zerosign X (if sign a = sign b then 0 else 1)
(round X m (valof X a * valof X b))
- fneg
-
⊢ ∀X m a. fneg X m a = (1 − sign a,exponent a,fraction a)
- fraction
-
⊢ ∀s e f. fraction (s,e,f) = f
- fracwidth
-
⊢ ∀ew fw. fracwidth (ew,fw) = fw
- frem
-
⊢ ∀X m a b.
frem X m a b =
if is_nan X a ∨ is_nan X b ∨ is_infinity X a ∨ is_zero X b then some_nan X
else if is_infinity X b then a
else zerosign X (sign a) (round X m (valof X a rem valof X b))
- fsqrt
-
⊢ ∀X m a.
fsqrt X m a =
if is_nan X a then some_nan X
else if is_zero X a ∨ is_infinity X a ∧ (sign a = 0) then a
else if sign a = 1 then some_nan X
else zerosign X (sign a) (round X m (sqrt (valof X a)))
- fsub
-
⊢ ∀X m a b.
fsub X m a b =
if
is_nan X a ∨ is_nan X b ∨
is_infinity X a ∧ is_infinity X b ∧ (sign a = sign b)
then
some_nan X
else if is_infinity X a then a
else if is_infinity X b then minus X b
else
zerosign X
(if is_zero X a ∧ is_zero X b ∧ sign a ≠ sign b then sign a
else if m = To_ninfinity then 1
else 0) (round X m (valof X a − valof X b))
- intround_def
-
⊢ (∀X x.
intround X To_nearest x =
if x ≤ -threshold X then minus_infinity X
else if x ≥ threshold X then plus_infinity X
else
closest (valof X) (λa. ∃n. EVEN n ∧ (abs (valof X a) = &n))
{a | is_integral X a} x) ∧
(∀X x.
intround X float_To_zero x =
if x < -largest X then bottomfloat X
else if x > largest X then topfloat X
else
closest (valof X) (λx. T)
{a | is_integral X a ∧ abs (valof X a) ≤ abs x} x) ∧
(∀X x.
intround X To_pinfinity x =
if x < -largest X then bottomfloat X
else if x > largest X then plus_infinity X
else closest (valof X) (λx. T) {a | is_integral X a ∧ valof X a ≥ x} x) ∧
∀X x.
intround X To_ninfinity x =
if x < -largest X then minus_infinity X
else if x > largest X then topfloat X
else closest (valof X) (λx. T) {a | is_integral X a ∧ valof X a ≤ x} x
- is_closest
-
⊢ ∀v s x a.
is_closest v s x a ⇔ a ∈ s ∧ ∀b. b ∈ s ⇒ abs (v a − x) ≤ abs (v b − x)
- is_denormal
-
⊢ ∀X a. is_denormal X a ⇔ (exponent a = 0) ∧ fraction a ≠ 0
- is_double
-
⊢ ∀X. is_double X ⇔ (expwidth X = 11) ∧ (wordlength X = 64)
- is_double_extended
-
⊢ ∀X. is_double_extended X ⇔ expwidth X ≥ 15 ∧ wordlength X ≥ 79
- is_finite
-
⊢ ∀X a.
is_finite X a ⇔
is_valid X a ∧ (is_normal X a ∨ is_denormal X a ∨ is_zero X a)
- is_infinity
-
⊢ ∀X a. is_infinity X a ⇔ (exponent a = emax X) ∧ (fraction a = 0)
- is_integral
-
⊢ ∀X a. is_integral X a ⇔ is_finite X a ∧ ∃n. abs (valof X a) = &n
- is_nan
-
⊢ ∀X a. is_nan X a ⇔ (exponent a = emax X) ∧ fraction a ≠ 0
- is_normal
-
⊢ ∀X a. is_normal X a ⇔ 0 < exponent a ∧ exponent a < emax X
- is_single
-
⊢ ∀X. is_single X ⇔ (expwidth X = 8) ∧ (wordlength X = 32)
- is_single_extended
-
⊢ ∀X. is_single_extended X ⇔ expwidth X ≥ 11 ∧ wordlength X ≥ 43
- is_valid
-
⊢ ∀X s e f.
is_valid X (s,e,f) ⇔
s < SUC (SUC 0) ∧ e < 2 ** expwidth X ∧ f < 2 ** fracwidth X
- is_zero
-
⊢ ∀X a. is_zero X a ⇔ (exponent a = 0) ∧ (fraction a = 0)
- largest
-
⊢ ∀X. largest X =
2 pow (emax X − 1) / 2 pow bias X * (2 − (2 pow fracwidth X)⁻¹)
- minus
-
⊢ ∀X a. minus X a = (1 − sign a,exponent a,fraction a)
- minus_infinity
-
⊢ ∀X. minus_infinity X = (1,emax X,0)
- minus_zero
-
⊢ ∀X. minus_zero X = (1,0,0)
- plus_infinity
-
⊢ ∀X. plus_infinity X = (0,emax X,0)
- plus_zero
-
⊢ ∀X. plus_zero X = (0,0,0)
- rem
-
⊢ ∀x y.
x rem y =
(let
n =
closest I (λx. ∃n. EVEN n ∧ (abs x = &n)) {x | (∃n. abs x = &n)}
(x / y)
in
x − n * y)
- round_def
-
⊢ (∀X x.
round X To_nearest x =
if x ≤ -threshold X then minus_infinity X
else if x ≥ threshold X then plus_infinity X
else closest (valof X) (λa. EVEN (fraction a)) {a | is_finite X a} x) ∧
(∀X x.
round X float_To_zero x =
if x < -largest X then bottomfloat X
else if x > largest X then topfloat X
else
closest (valof X) (λx. T) {a | is_finite X a ∧ abs (valof X a) ≤ abs x}
x) ∧
(∀X x.
round X To_pinfinity x =
if x < -largest X then bottomfloat X
else if x > largest X then plus_infinity X
else closest (valof X) (λx. T) {a | is_finite X a ∧ valof X a ≥ x} x) ∧
∀X x.
round X To_ninfinity x =
if x < -largest X then minus_infinity X
else if x > largest X then topfloat X
else closest (valof X) (λx. T) {a | is_finite X a ∧ valof X a ≤ x} x
- roundmode_BIJ
-
⊢ (∀a. num2roundmode (roundmode2num a) = a) ∧
∀r. (λn. n < 4) r ⇔ (roundmode2num (num2roundmode r) = r)
- roundmode_CASE
-
⊢ ∀x v0 v1 v2 v3.
(case x of
To_nearest => v0
| float_To_zero => v1
| To_pinfinity => v2
| To_ninfinity => v3) =
(λm. if m < 1 then v0 else if m < 2 then v1 else if m = 2 then v2 else v3)
(roundmode2num x)
- roundmode_TY_DEF
-
⊢ ∃rep. TYPE_DEFINITION (λn. n < 4) rep
- roundmode_size_def
-
⊢ ∀x. roundmode_size x = 0
- sign
-
⊢ ∀s e f. sign (s,e,f) = s
- some_nan
-
⊢ ∀X. some_nan X = @a. is_nan X a
- threshold
-
⊢ ∀X. threshold X =
2 pow (emax X − 1) / 2 pow bias X * (2 − (2 pow SUC (fracwidth X))⁻¹)
- topfloat
-
⊢ ∀X. topfloat X = (0,emax X − 1,2 ** fracwidth X − 1)
- ulp
-
⊢ ∀X a. ulp X a = valof X (0,exponent a,1) − valof X (0,exponent a,0)
- valof
-
⊢ ∀X s e f.
valof X (s,e,f) =
if e = 0 then -1 pow s * (2 / 2 pow bias X) * (&f / 2 pow fracwidth X)
else -1 pow s * (2 pow e / 2 pow bias X) * (1 + &f / 2 pow fracwidth X)
- wordlength
-
⊢ ∀X. wordlength X = expwidth X + fracwidth X + 1
- zerosign
-
⊢ ∀X s a.
zerosign X s a =
if is_zero X a then if s = 0 then plus_zero X else minus_zero X else a
- ccode2num_11
-
⊢ ∀a a'. (ccode2num a = ccode2num a') ⇔ (a = a')
- ccode2num_ONTO
-
⊢ ∀r. r < 4 ⇔ ∃a. r = ccode2num a
- ccode2num_num2ccode
-
⊢ ∀r. r < 4 ⇔ (ccode2num (num2ccode r) = r)
- ccode2num_thm
-
⊢ (ccode2num Gt = 0) ∧ (ccode2num Lt = 1) ∧ (ccode2num Eq = 2) ∧
(ccode2num Un = 3)
- ccode_Axiom
-
⊢ ∀x0 x1 x2 x3. ∃f. (f Gt = x0) ∧ (f Lt = x1) ∧ (f Eq = x2) ∧ (f Un = x3)
- ccode_EQ_ccode
-
⊢ ∀a a'. (a = a') ⇔ (ccode2num a = ccode2num a')
- ccode_case_cong
-
⊢ ∀M M' v0 v1 v2 v3.
(M = M') ∧ ((M' = Gt) ⇒ (v0 = v0')) ∧ ((M' = Lt) ⇒ (v1 = v1')) ∧
((M' = Eq) ⇒ (v2 = v2')) ∧ ((M' = Un) ⇒ (v3 = v3')) ⇒
((case M of Gt => v0 | Lt => v1 | Eq => v2 | Un => v3) =
case M' of Gt => v0' | Lt => v1' | Eq => v2' | Un => v3')
- ccode_case_def
-
⊢ (∀v0 v1 v2 v3. (case Gt of Gt => v0 | Lt => v1 | Eq => v2 | Un => v3) = v0) ∧
(∀v0 v1 v2 v3. (case Lt of Gt => v0 | Lt => v1 | Eq => v2 | Un => v3) = v1) ∧
(∀v0 v1 v2 v3. (case Eq of Gt => v0 | Lt => v1 | Eq => v2 | Un => v3) = v2) ∧
∀v0 v1 v2 v3. (case Un of Gt => v0 | Lt => v1 | Eq => v2 | Un => v3) = v3
- ccode_case_eq
-
⊢ ((case x of Gt => v0 | Lt => v1 | Eq => v2 | Un => v3) = v) ⇔
(x = Gt) ∧ (v0 = v) ∨ (x = Lt) ∧ (v1 = v) ∨ (x = Eq) ∧ (v2 = v) ∨
(x = Un) ∧ (v3 = v)
- ccode_distinct
-
⊢ Gt ≠ Lt ∧ Gt ≠ Eq ∧ Gt ≠ Un ∧ Lt ≠ Eq ∧ Lt ≠ Un ∧ Eq ≠ Un
- ccode_induction
-
⊢ ∀P. P Eq ∧ P Gt ∧ P Lt ∧ P Un ⇒ ∀a. P a
- ccode_nchotomy
-
⊢ ∀a. (a = Gt) ∨ (a = Lt) ∨ (a = Eq) ∨ (a = Un)
- datatype_ccode
-
⊢ DATATYPE (ccode Gt Lt Eq Un)
- datatype_roundmode
-
⊢ DATATYPE (roundmode To_nearest float_To_zero To_pinfinity To_ninfinity)
- num2ccode_11
-
⊢ ∀r r'. r < 4 ⇒ r' < 4 ⇒ ((num2ccode r = num2ccode r') ⇔ (r = r'))
- num2ccode_ONTO
-
⊢ ∀a. ∃r. (a = num2ccode r) ∧ r < 4
- num2ccode_ccode2num
-
⊢ ∀a. num2ccode (ccode2num a) = a
- num2ccode_thm
-
⊢ (num2ccode 0 = Gt) ∧ (num2ccode 1 = Lt) ∧ (num2ccode 2 = Eq) ∧
(num2ccode 3 = Un)
- num2roundmode_11
-
⊢ ∀r r'. r < 4 ⇒ r' < 4 ⇒ ((num2roundmode r = num2roundmode r') ⇔ (r = r'))
- num2roundmode_ONTO
-
⊢ ∀a. ∃r. (a = num2roundmode r) ∧ r < 4
- num2roundmode_roundmode2num
-
⊢ ∀a. num2roundmode (roundmode2num a) = a
- num2roundmode_thm
-
⊢ (num2roundmode 0 = To_nearest) ∧ (num2roundmode 1 = float_To_zero) ∧
(num2roundmode 2 = To_pinfinity) ∧ (num2roundmode 3 = To_ninfinity)
- roundmode2num_11
-
⊢ ∀a a'. (roundmode2num a = roundmode2num a') ⇔ (a = a')
- roundmode2num_ONTO
-
⊢ ∀r. r < 4 ⇔ ∃a. r = roundmode2num a
- roundmode2num_num2roundmode
-
⊢ ∀r. r < 4 ⇔ (roundmode2num (num2roundmode r) = r)
- roundmode2num_thm
-
⊢ (roundmode2num To_nearest = 0) ∧ (roundmode2num float_To_zero = 1) ∧
(roundmode2num To_pinfinity = 2) ∧ (roundmode2num To_ninfinity = 3)
- roundmode_Axiom
-
⊢ ∀x0 x1 x2 x3. ∃f.
(f To_nearest = x0) ∧ (f float_To_zero = x1) ∧ (f To_pinfinity = x2) ∧
(f To_ninfinity = x3)
- roundmode_EQ_roundmode
-
⊢ ∀a a'. (a = a') ⇔ (roundmode2num a = roundmode2num a')
- roundmode_case_cong
-
⊢ ∀M M' v0 v1 v2 v3.
(M = M') ∧ ((M' = To_nearest) ⇒ (v0 = v0')) ∧
((M' = float_To_zero) ⇒ (v1 = v1')) ∧ ((M' = To_pinfinity) ⇒ (v2 = v2')) ∧
((M' = To_ninfinity) ⇒ (v3 = v3')) ⇒
((case M of
To_nearest => v0
| float_To_zero => v1
| To_pinfinity => v2
| To_ninfinity => v3) =
case M' of
To_nearest => v0'
| float_To_zero => v1'
| To_pinfinity => v2'
| To_ninfinity => v3')
- roundmode_case_def
-
⊢ (∀v0 v1 v2 v3.
(case To_nearest of
To_nearest => v0
| float_To_zero => v1
| To_pinfinity => v2
| To_ninfinity => v3) = v0) ∧
(∀v0 v1 v2 v3.
(case float_To_zero of
To_nearest => v0
| float_To_zero => v1
| To_pinfinity => v2
| To_ninfinity => v3) = v1) ∧
(∀v0 v1 v2 v3.
(case To_pinfinity of
To_nearest => v0
| float_To_zero => v1
| To_pinfinity => v2
| To_ninfinity => v3) = v2) ∧
∀v0 v1 v2 v3.
(case To_ninfinity of
To_nearest => v0
| float_To_zero => v1
| To_pinfinity => v2
| To_ninfinity => v3) = v3
- roundmode_case_eq
-
⊢ ((case x of
To_nearest => v0
| float_To_zero => v1
| To_pinfinity => v2
| To_ninfinity => v3) = v) ⇔
(x = To_nearest) ∧ (v0 = v) ∨ (x = float_To_zero) ∧ (v1 = v) ∨
(x = To_pinfinity) ∧ (v2 = v) ∨ (x = To_ninfinity) ∧ (v3 = v)
- roundmode_distinct
-
⊢ To_nearest ≠ float_To_zero ∧ To_nearest ≠ To_pinfinity ∧
To_nearest ≠ To_ninfinity ∧ float_To_zero ≠ To_pinfinity ∧
float_To_zero ≠ To_ninfinity ∧ To_pinfinity ≠ To_ninfinity
- roundmode_induction
-
⊢ ∀P. P To_nearest ∧ P To_ninfinity ∧ P To_pinfinity ∧ P float_To_zero ⇒
∀a. P a
- roundmode_nchotomy
-
⊢ ∀a. (a = To_nearest) ∨ (a = float_To_zero) ∨ (a = To_pinfinity) ∨
(a = To_ninfinity)