Theory "quotient_sum"

Parents     quotient

Signature

Constant Type
+++ :(α -> α -> bool) -> (β -> β -> bool) -> α + β -> α + β -> bool

Theorems

INL_PRS
⊢ ∀R1 abs1 rep1.
    QUOTIENT R1 abs1 rep1 ⇒
    ∀R2 abs2 rep2.
      QUOTIENT R2 abs2 rep2 ⇒ ∀a. INL a = SUM_MAP abs1 abs2 (INL (rep1 a))
INL_RSP
⊢ ∀R1 abs1 rep1.
    QUOTIENT R1 abs1 rep1 ⇒
    ∀R2 abs2 rep2.
      QUOTIENT R2 abs2 rep2 ⇒ ∀a1 a2. R1 a1 a2 ⇒ (R1 +++ R2) (INL a1) (INL a2)
INR_PRS
⊢ ∀R1 abs1 rep1.
    QUOTIENT R1 abs1 rep1 ⇒
    ∀R2 abs2 rep2.
      QUOTIENT R2 abs2 rep2 ⇒ ∀b. INR b = SUM_MAP abs1 abs2 (INR (rep2 b))
INR_RSP
⊢ ∀R1 abs1 rep1.
    QUOTIENT R1 abs1 rep1 ⇒
    ∀R2 abs2 rep2.
      QUOTIENT R2 abs2 rep2 ⇒ ∀b1 b2. R2 b1 b2 ⇒ (R1 +++ R2) (INR b1) (INR b2)
ISL_PRS
⊢ ∀R1 abs1 rep1.
    QUOTIENT R1 abs1 rep1 ⇒
    ∀R2 abs2 rep2.
      QUOTIENT R2 abs2 rep2 ⇒ ∀a. ISL a ⇔ ISL (SUM_MAP rep1 rep2 a)
ISL_RSP
⊢ ∀R1 abs1 rep1.
    QUOTIENT R1 abs1 rep1 ⇒
    ∀R2 abs2 rep2.
      QUOTIENT R2 abs2 rep2 ⇒ ∀a1 a2. (R1 +++ R2) a1 a2 ⇒ (ISL a1 ⇔ ISL a2)
ISR_PRS
⊢ ∀R1 abs1 rep1.
    QUOTIENT R1 abs1 rep1 ⇒
    ∀R2 abs2 rep2.
      QUOTIENT R2 abs2 rep2 ⇒ ∀a. ISR a ⇔ ISR (SUM_MAP rep1 rep2 a)
ISR_RSP
⊢ ∀R1 abs1 rep1.
    QUOTIENT R1 abs1 rep1 ⇒
    ∀R2 abs2 rep2.
      QUOTIENT R2 abs2 rep2 ⇒ ∀a1 a2. (R1 +++ R2) a1 a2 ⇒ (ISR a1 ⇔ ISR a2)
SUM_EQUIV
⊢ ∀R1 R2. EQUIV R1 ⇒ EQUIV R2 ⇒ EQUIV (R1 +++ R2)
SUM_MAP_PRS
⊢ ∀R1 abs1 rep1.
    QUOTIENT R1 abs1 rep1 ⇒
    ∀R2 abs2 rep2.
      QUOTIENT R2 abs2 rep2 ⇒
      ∀R3 abs3 rep3.
        QUOTIENT R3 abs3 rep3 ⇒
        ∀R4 abs4 rep4.
          QUOTIENT R4 abs4 rep4 ⇒
          ∀f g.
            SUM_MAP f g =
            (SUM_MAP rep1 rep3 ⟶ SUM_MAP abs2 abs4)
              (SUM_MAP ((abs1 ⟶ rep2) f) ((abs3 ⟶ rep4) g))
SUM_MAP_RSP
⊢ ∀R1 abs1 rep1.
    QUOTIENT R1 abs1 rep1 ⇒
    ∀R2 abs2 rep2.
      QUOTIENT R2 abs2 rep2 ⇒
      ∀R3 abs3 rep3.
        QUOTIENT R3 abs3 rep3 ⇒
        ∀R4 abs4 rep4.
          QUOTIENT R4 abs4 rep4 ⇒
          ∀f1 f2 g1 g2.
            (R1 ===> R2) f1 f2 ∧ (R3 ===> R4) g1 g2 ⇒
            ((R1 +++ R3) ===> (R2 +++ R4)) (SUM_MAP f1 g1) (SUM_MAP f2 g2)
SUM_QUOTIENT
⊢ ∀R1 abs1 rep1.
    QUOTIENT R1 abs1 rep1 ⇒
    ∀R2 abs2 rep2.
      QUOTIENT R2 abs2 rep2 ⇒
      QUOTIENT (R1 +++ R2) (SUM_MAP abs1 abs2) (SUM_MAP rep1 rep2)
SUM_REL_EQ
⊢ $= +++ $= = $=
SUM_REL_def
⊢ ((R1 +++ R2) (INL a1) (INL a2) ⇔ R1 a1 a2) ∧
  ((R1 +++ R2) (INR b1) (INR b2) ⇔ R2 b1 b2) ∧
  ((R1 +++ R2) (INL a1) (INR b2) ⇔ F) ∧ ((R1 +++ R2) (INR b1) (INL a2) ⇔ F)
SUM_REL_ind
⊢ ∀P. (∀R1 R2 a1 a2. P R1 R2 (INL a1) (INL a2)) ∧
      (∀R1 R2 b1 b2. P R1 R2 (INR b1) (INR b2)) ∧
      (∀R1 R2 a1 b2. P R1 R2 (INL a1) (INR b2)) ∧
      (∀R1 R2 b1 a2. P R1 R2 (INR b1) (INL a2)) ⇒
      ∀v v1 v2 v3. P v v1 v2 v3