- RREFL_EXP_def
-
⊢ ∀R s. RREFL_EXP R s = R ∪ᵣ (λx y. (x = y) ∧ x ∉ s)
- RRUNIV_def
-
⊢ ∀s. RRUNIV s = (λx y. x ∈ s ∧ y ∈ s)
- acyclic_def
-
⊢ ∀r. acyclic r ⇔ ∀x. (x,x) ∉ tc r
- all_choices_def
-
⊢ ∀xss.
all_choices xss =
{IMAGE choice xss | choice | ∀xs. xs ∈ xss ⇒ choice xs ∈ xs}
- antisym_def
-
⊢ ∀r. antisym r ⇔ ∀x y. (x,y) ∈ r ∧ (y,x) ∈ r ⇒ (x = y)
- chain_def
-
⊢ ∀s r. chain s r ⇔ ∀x y. x ∈ s ∧ y ∈ s ⇒ (x,y) ∈ r ∨ (y,x) ∈ r
- domain_def
-
⊢ ∀r. domain r = {x | ∃y. (x,y) ∈ r}
- fchains_def
-
⊢ ∀r. fchains r =
{k |
chain k r ∧ k ≠ ∅ ∧
∀C. chain C r ∧ C ⊆ k ∧ (upper_bounds C r DIFF C) ∩ k ≠ ∅ ⇒
CHOICE (upper_bounds C r DIFF C) ∈
minimal_elements ((upper_bounds C r DIFF C) ∩ k) r}
- finite_prefixes_def
-
⊢ ∀r s. finite_prefixes r s ⇔ ∀e. e ∈ s ⇒ FINITE {e' | (e',e) ∈ r}
- get_min_def
-
⊢ ∀r' s r.
get_min r' (s,r) =
(let
mins = minimal_elements (minimal_elements s r) r'
in
if SING mins then SOME (CHOICE mins) else NONE)
- irreflexive_def
-
⊢ ∀r s. irreflexive r s ⇔ ∀x. x ∈ s ⇒ (x,x) ∉ r
- linear_order_def
-
⊢ ∀r s.
linear_order r s ⇔
domain r ⊆ s ∧ range r ⊆ s ∧ transitive r ∧ antisym r ∧
∀x y. x ∈ s ∧ y ∈ s ⇒ (x,y) ∈ r ∨ (y,x) ∈ r
- maximal_elements_def
-
⊢ ∀xs r.
maximal_elements xs r =
{x | x ∈ xs ∧ ∀x'. x' ∈ xs ∧ (x,x') ∈ r ⇒ (x = x')}
- minimal_elements_def
-
⊢ ∀xs r.
minimal_elements xs r =
{x | x ∈ xs ∧ ∀x'. x' ∈ xs ∧ (x',x) ∈ r ⇒ (x = x')}
- num_order_def
-
⊢ ∀f s. num_order f s = {(x,y) | x ∈ s ∧ y ∈ s ∧ f x ≤ f y}
- partial_order_def
-
⊢ ∀r s.
partial_order r s ⇔
domain r ⊆ s ∧ range r ⊆ s ∧ transitive r ∧ reflexive r s ∧ antisym r
- per_def
-
⊢ ∀xs xss.
per xs xss ⇔
BIGUNION xss ⊆ xs ∧ ∅ ∉ xss ∧
∀xs1 xs2. xs1 ∈ xss ∧ xs2 ∈ xss ∧ xs1 ≠ xs2 ⇒ DISJOINT xs1 xs2
- per_restrict_def
-
⊢ ∀xss xs. per_restrict xss xs = {xs' ∩ xs | xs' ∈ xss} DELETE ∅
- range_def
-
⊢ ∀r. range r = {y | ∃x. (x,y) ∈ r}
- rcomp_def
-
⊢ ∀r1 r2. r1 OO r2 = {(x,y) | ∃z. (x,z) ∈ r1 ∧ (z,y) ∈ r2}
- reflexive_def
-
⊢ ∀r s. reflexive r s ⇔ ∀x. x ∈ s ⇒ (x,x) ∈ r
- rel_to_reln_def
-
⊢ ∀R. rel_to_reln R = {(x,y) | R x y}
- reln_to_rel_def
-
⊢ ∀r. reln_to_rel r = (λx y. (x,y) ∈ r)
- rrestrict_def
-
⊢ ∀r s. rrestrict r s = {(x,y) | (x,y) ∈ r ∧ x ∈ s ∧ y ∈ s}
- strict_def
-
⊢ ∀r. strict r = {(x,y) | (x,y) ∈ r ∧ x ≠ y}
- strict_linear_order_def
-
⊢ ∀r s.
strict_linear_order r s ⇔
domain r ⊆ s ∧ range r ⊆ s ∧ transitive r ∧ (∀x. (x,x) ∉ r) ∧
∀x y. x ∈ s ∧ y ∈ s ∧ x ≠ y ⇒ (x,y) ∈ r ∨ (y,x) ∈ r
- tc_def
-
⊢ tc =
(λr a0.
∀tc'.
(∀a0.
(∃x y. (a0 = (x,y)) ∧ r (x,y)) ∨
(∃x y. (a0 = (x,y)) ∧ ∃z. tc' (x,z) ∧ tc' (z,y)) ⇒
tc' a0) ⇒
tc' a0)
- transitive_def
-
⊢ ∀r. transitive r ⇔ ∀x y z. (x,y) ∈ r ∧ (y,z) ∈ r ⇒ (x,z) ∈ r
- univ_reln_def
-
⊢ ∀xs. univ_reln xs = {(x1,x2) | x1 ∈ xs ∧ x2 ∈ xs}
- upper_bounds_def
-
⊢ ∀s r. upper_bounds s r = {x | x ∈ range r ∧ ∀y. y ∈ s ⇒ (y,x) ∈ r}
- IN_MIN_LO
-
⊢ x ∈ X ⇒ linear_order lo X ⇒ y ∈ minimal_elements X lo ⇒ (y,x) ∈ lo
- REL_RESTRICT_UNIV
-
⊢ REL_RESTRICT R 𝕌(:α) = R
- RREFL_EXP_RSUBSET
-
⊢ R ⊆ᵣ RREFL_EXP R s
- RREFL_EXP_UNIV
-
⊢ RREFL_EXP R 𝕌(:α) = R
- WF_has_minimal_path
-
⊢ WF (reln_to_rel r) ⇒
x ∈ s ⇒
∃y. y ∈ minimal_elements s r ∧ ((y,x) ∈ tc r ∨ (y = x))
- acyclic_SWAP
-
⊢ acyclic (IMAGE SWAP r) ⇔ acyclic r
- acyclic_WF
-
⊢ FINITE s ∧ acyclic r ∧ domain r ⊆ s ∧ range r ⊆ s ⇒ WF (reln_to_rel r)
- acyclic_bigunion
-
⊢ ∀rs.
(∀r r'.
r ∈ rs ∧ r' ∈ rs ∧ r ≠ r' ⇒
DISJOINT (domain r ∪ range r) (domain r' ∪ range r')) ∧
(∀r. r ∈ rs ⇒ acyclic r) ⇒
acyclic (BIGUNION rs)
- acyclic_irreflexive
-
⊢ ∀r x. acyclic r ⇒ (x,x) ∉ r
- acyclic_reln_to_rel_conv
-
⊢ acyclic r ⇔ irreflexive (reln_to_rel r)⁺
- acyclic_rrestrict
-
⊢ ∀r s. acyclic r ⇒ acyclic (rrestrict r s)
- acyclic_subset
-
⊢ ∀r1 r2. acyclic r1 ∧ r2 ⊆ r1 ⇒ acyclic r2
- acyclic_union
-
⊢ ∀r r'.
DISJOINT (domain r ∪ range r) (domain r' ∪ range r') ∧ acyclic r ∧
acyclic r' ⇒
acyclic (r ∪ r')
- all_choices_thm
-
⊢ ∀x s y. x ∈ all_choices s ∧ y ∈ x ⇒ ∃z. z ∈ s ∧ y ∈ z
- antisym_reln_to_rel_conv
-
⊢ antisym r ⇔ antisymmetric (reln_to_rel r)
- antisym_subset
-
⊢ antisym t ⇒ s ⊆ t ⇒ antisym s
- countable_per
-
⊢ ∀xs xss. COUNTABLE xs ∧ per xs xss ⇒ COUNTABLE xss
- domain_mono
-
⊢ r ⊆ r' ⇒ domain r ⊆ domain r'
- domain_rrestrict_SUBSET
-
⊢ domain (rrestrict r s) ⊆ s
- domain_to_rel_conv
-
⊢ domain r = RDOM (reln_to_rel r)
- empty_linear_order
-
⊢ ∀r. linear_order r ∅ ⇔ (r = ∅)
- empty_strict_linear_order
-
⊢ ∀r. strict_linear_order r ∅ ⇔ (r = ∅)
- extend_linear_order
-
⊢ ∀r s x.
x ∉ s ∧ linear_order r s ⇒
linear_order (r ∪ {(y,x) | y | y ∈ s ∪ {x}}) (s ∪ {x})
- finite_acyclic_has_maximal
-
⊢ ∀s. FINITE s ⇒ s ≠ ∅ ⇒ ∀r. acyclic r ⇒ ∃x. x ∈ maximal_elements s r
- finite_acyclic_has_maximal_path
-
⊢ ∀s r x.
FINITE s ∧ acyclic r ∧ x ∈ s ∧ x ∉ maximal_elements s r ⇒
∃y. y ∈ maximal_elements s r ∧ (x,y) ∈ tc r
- finite_acyclic_has_minimal
-
⊢ ∀s. FINITE s ⇒ s ≠ ∅ ⇒ ∀r. acyclic r ⇒ ∃x. x ∈ minimal_elements s r
- finite_acyclic_has_minimal_path
-
⊢ ∀s r x.
FINITE s ∧ acyclic r ∧ x ∈ s ∧ x ∉ minimal_elements s r ⇒
∃y. y ∈ minimal_elements s r ∧ (y,x) ∈ tc r
- finite_linear_order_has_maximal
-
⊢ ∀s r. FINITE s ∧ linear_order r s ∧ s ≠ ∅ ⇒ ∃x. x ∈ maximal_elements s r
- finite_linear_order_has_minimal
-
⊢ ∀s r. FINITE s ∧ linear_order r s ∧ s ≠ ∅ ⇒ ∃x. x ∈ minimal_elements s r
- finite_prefix_linear_order_has_unique_minimal
-
⊢ ∀r s s'.
linear_order r s ∧ finite_prefixes r s ∧ x ∈ s' ∧ s' ⊆ s ⇒
SING (minimal_elements s' r)
- finite_prefix_po_has_minimal_path
-
⊢ ∀r s x s'.
partial_order r s ∧ finite_prefixes r s ∧ x ∉ minimal_elements s' r ∧
x ∈ s' ∧ s' ⊆ s ⇒
∃x'. x' ∈ minimal_elements s' r ∧ (x',x) ∈ r
- finite_prefixes_comp
-
⊢ ∀r1 r2 s1 s2.
finite_prefixes r1 s1 ∧ finite_prefixes r2 s2 ∧
{x | ∃y. y ∈ s2 ∧ (x,y) ∈ r2} ⊆ s1 ⇒
finite_prefixes (r1 OO r2) s2
- finite_prefixes_inj_image
-
⊢ ∀f r s.
(∀x y. (f x = f y) ⇒ (x = y)) ∧ finite_prefixes r s ⇒
finite_prefixes {(f x,f y) | (x,y) ∈ r} (IMAGE f s)
- finite_prefixes_range
-
⊢ ∀r s t.
finite_prefixes r s ∧ DISJOINT t (range r) ⇒ finite_prefixes r (s ∪ t)
- finite_prefixes_subset
-
⊢ ∀r s s'.
finite_prefixes r s ∧ s' ⊆ s ⇒
finite_prefixes r s' ∧ finite_prefixes (rrestrict r s') s'
- finite_prefixes_subset_r
-
⊢ ∀r r' s. finite_prefixes r s ∧ r' ⊆ r ⇒ finite_prefixes r' s
- finite_prefixes_subset_rs
-
⊢ ∀r s r' s'. finite_prefixes r s ⇒ r' ⊆ r ⇒ s' ⊆ s ⇒ finite_prefixes r' s'
- finite_prefixes_subset_s
-
⊢ ∀r s s'. finite_prefixes r s ∧ s' ⊆ s ⇒ finite_prefixes r s'
- finite_prefixes_union
-
⊢ ∀r1 r2 s1 s2.
finite_prefixes r1 s1 ∧ finite_prefixes r2 s2 ⇒
finite_prefixes (r1 ∪ r2) (s1 ∩ s2)
- finite_strict_linear_order_has_maximal
-
⊢ ∀s r.
FINITE s ∧ strict_linear_order r s ∧ s ≠ ∅ ⇒ ∃x. x ∈ maximal_elements s r
- finite_strict_linear_order_has_minimal
-
⊢ ∀s r.
FINITE s ∧ strict_linear_order r s ∧ s ≠ ∅ ⇒ ∃x. x ∈ minimal_elements s r
- in_dom_rg
-
⊢ (x,y) ∈ r ⇒ x ∈ domain r ∧ y ∈ range r
- in_domain
-
⊢ ∀x r. x ∈ domain r ⇔ ∃y. (x,y) ∈ r
- in_range
-
⊢ ∀y r. y ∈ range r ⇔ ∃x. (x,y) ∈ r
- in_rel_to_reln
-
⊢ xy ∈ rel_to_reln R ⇔ R (FST xy) (SND xy)
- in_rrestrict
-
⊢ ∀x y r s. (x,y) ∈ rrestrict r s ⇔ (x,y) ∈ r ∧ x ∈ s ∧ y ∈ s
- in_rrestrict_alt
-
⊢ x ∈ rrestrict r s ⇔ x ∈ r ∧ FST x ∈ s ∧ SND x ∈ s
- irreflexive_reln_to_rel_conv
-
⊢ irreflexive r s ⇔ irreflexive (REL_RESTRICT (reln_to_rel r) s)
- irreflexive_reln_to_rel_conv_UNIV
-
⊢ irreflexive r 𝕌(:α) ⇔ irreflexive (reln_to_rel r)
- linear_order
-
⊢ ∀r s. strict_linear_order r s ⇒ linear_order (r ∪ {(x,x) | x ∈ s}) s
- linear_order_dom_rg
-
⊢ linear_order lo X ⇒ (domain lo ∪ range lo = X)
- linear_order_dom_rng
-
⊢ ∀r s x y. (x,y) ∈ r ∧ linear_order r s ⇒ x ∈ s ∧ y ∈ s
- linear_order_in_set
-
⊢ linear_order lo X ⇒ (x,y) ∈ lo ⇒ x ∈ X ∧ y ∈ X
- linear_order_num_order
-
⊢ ∀f s t. INJ f s t ⇒ linear_order (num_order f s) s
- linear_order_of_countable_po
-
⊢ ∀r s.
COUNTABLE s ∧ partial_order r s ∧ finite_prefixes r s ⇒
∃r'. linear_order r' s ∧ finite_prefixes r' s ∧ r ⊆ r'
- linear_order_refl
-
⊢ linear_order lo X ⇒ x ∈ X ⇒ (x,x) ∈ lo
- linear_order_reln_to_rel_conv_UNIV
-
⊢ linear_order r 𝕌(:α) ⇔ WeakLinearOrder (reln_to_rel r)
- linear_order_restrict
-
⊢ ∀s r s'. linear_order r s ⇒ linear_order (rrestrict r s') (s ∩ s')
- linear_order_subset
-
⊢ ∀r s s'. linear_order r s ∧ s' ⊆ s ⇒ linear_order (rrestrict r s') s'
- maximal_TC
-
⊢ ∀s r.
domain r ⊆ s ∧ range r ⊆ s ⇒
(maximal_elements s (tc r) = maximal_elements s r)
- maximal_linear_order
-
⊢ ∀s r x y. y ∈ s ∧ linear_order r s ∧ x ∈ maximal_elements s r ⇒ (y,x) ∈ r
- maximal_union
-
⊢ ∀e s r1 r2.
e ∈ maximal_elements s (r1 ∪ r2) ⇒
e ∈ maximal_elements s r1 ∧ e ∈ maximal_elements s r2
- minimal_TC
-
⊢ ∀s r.
domain r ⊆ s ∧ range r ⊆ s ⇒
(minimal_elements s (tc r) = minimal_elements s r)
- minimal_elements_SWAP
-
⊢ minimal_elements xs (IMAGE SWAP r) = maximal_elements xs r
- minimal_elements_mono
-
⊢ r ⊆ r' ⇒ minimal_elements xs r' ⊆ minimal_elements xs r
- minimal_elements_rrestrict
-
⊢ minimal_elements xs (rrestrict r xs) = minimal_elements xs r
- minimal_elements_subset
-
⊢ minimal_elements s lo ⊆ s
- minimal_linear_order
-
⊢ ∀s r x y. y ∈ s ∧ linear_order r s ∧ x ∈ minimal_elements s r ⇒ (x,y) ∈ r
- minimal_linear_order_unique
-
⊢ ∀r s s' x y.
linear_order r s ∧ x ∈ minimal_elements s' r ∧ y ∈ minimal_elements s' r ∧
s' ⊆ s ⇒
(x = y)
- minimal_union
-
⊢ ∀e s r1 r2.
e ∈ minimal_elements s (r1 ∪ r2) ⇒
e ∈ minimal_elements s r1 ∧ e ∈ minimal_elements s r2
- nat_order_iso_thm
-
⊢ ∀f s.
(∀n m. (f m = f n) ∧ f m ≠ NONE ⇒ (m = n)) ∧
(∀x. x ∈ s ⇒ ∃m. f m = SOME x) ∧ (∀m x. (f m = SOME x) ⇒ x ∈ s) ⇒
linear_order {(x,y) | (∃m n. m ≤ n ∧ (f m = SOME x) ∧ (f n = SOME y))} s ∧
finite_prefixes {(x,y) | (∃m n. m ≤ n ∧ (f m = SOME x) ∧ (f n = SOME y))}
s
- nth_min_compute
-
⊢ (∀s r' r. nth_min r' (s,r) 0 = get_min r' (s,r)) ∧
(∀s r' r n.
nth_min r' (s,r) (NUMERAL (BIT1 n)) =
(let
min = get_min r' (s,r)
in
if min = NONE then NONE
else nth_min r' (s DELETE THE min,r) (NUMERAL (BIT1 n) − 1))) ∧
∀s r' r n.
nth_min r' (s,r) (NUMERAL (BIT2 n)) =
(let
min = get_min r' (s,r)
in
if min = NONE then NONE
else nth_min r' (s DELETE THE min,r) (NUMERAL (BIT1 n)))
- nth_min_def
-
⊢ (∀s r' r. nth_min r' (s,r) 0 = get_min r' (s,r)) ∧
∀s r' r n.
nth_min r' (s,r) (SUC n) =
(let
min = get_min r' (s,r)
in
if min = NONE then NONE else nth_min r' (s DELETE THE min,r) n)
- nth_min_ind
-
⊢ ∀P. (∀r' s r. P r' (s,r) 0) ∧
(∀r' s r n.
(∀min.
(min = get_min r' (s,r)) ∧ min ≠ NONE ⇒
P r' (s DELETE THE min,r) n) ⇒
P r' (s,r) (SUC n)) ⇒
∀v v1 v2 v3. P v (v1,v2) v3
- num_order_finite_prefix
-
⊢ ∀f s t. INJ f s t ⇒ finite_prefixes (num_order f s) s
- partial_order_dom_rng
-
⊢ ∀r s x y. (x,y) ∈ r ∧ partial_order r s ⇒ x ∈ s ∧ y ∈ s
- partial_order_linear_order
-
⊢ ∀r s. linear_order r s ⇒ partial_order r s
- partial_order_reln_to_rel_conv
-
⊢ partial_order r s ⇔
reln_to_rel r ⊆ᵣ RRUNIV s ∧ WeakOrder (RREFL_EXP (reln_to_rel r) s)
- partial_order_reln_to_rel_conv_UNIV
-
⊢ partial_order r 𝕌(:α) ⇔ WeakOrder (reln_to_rel r)
- partial_order_subset
-
⊢ ∀r s s'. partial_order r s ∧ s' ⊆ s ⇒ partial_order (rrestrict r s') s'
- per_delete
-
⊢ ∀xs xss e.
per xs xss ⇒
per (xs DELETE e) {es | es ∈ IMAGE (λes. es DELETE e) xss ∧ es ≠ ∅}
- per_restrict_per
-
⊢ ∀r s s'. per s r ⇒ per s' (per_restrict r s')
- range_mono
-
⊢ r ⊆ r' ⇒ range r ⊆ range r'
- range_rrestrict_SUBSET
-
⊢ range (rrestrict r s) ⊆ s
- range_to_rel_conv
-
⊢ range r = RRANGE (reln_to_rel r)
- rcomp_to_rel_conv
-
⊢ r1 OO r2 = rel_to_reln (reln_to_rel r2 ∘ᵣ reln_to_rel r1)
- reflexive_reln_to_rel_conv
-
⊢ reflexive r s ⇔ reflexive (RREFL_EXP (reln_to_rel r) s)
- reflexive_reln_to_rel_conv_UNIV
-
⊢ reflexive r 𝕌(:α) ⇔ reflexive (reln_to_rel r)
- rel_to_reln_11
-
⊢ (rel_to_reln R1 = rel_to_reln R2) ⇔ (R1 = R2)
- rel_to_reln_IS_UNCURRY
-
⊢ rel_to_reln = UNCURRY
- rel_to_reln_inv
-
⊢ reln_to_rel (rel_to_reln R) = R
- rel_to_reln_swap
-
⊢ (r = rel_to_reln R) ⇔ (reln_to_rel r = R)
- reln_rel_conv_thms
-
⊢ ((xy ∈ rel_to_reln R ⇔ R (FST xy) (SND xy)) ∧
(reln_to_rel r x y ⇔ (x,y) ∈ r) ∧ (reln_to_rel (rel_to_reln R) = R) ∧
(rel_to_reln (reln_to_rel r) = r) ∧
((reln_to_rel r1 = reln_to_rel r2) ⇔ (r1 = r2)) ∧
((rel_to_reln R1 = rel_to_reln R2) ⇔ (R1 = R2))) ∧
(RREFL_EXP R 𝕌(:α) = R) ∧ (REL_RESTRICT R 𝕌(:α) = R) ∧
(domain r = RDOM (reln_to_rel r)) ∧ (range r = RRANGE (reln_to_rel r)) ∧
(strict r = rel_to_reln (STRORD (reln_to_rel r))) ∧
(rrestrict r s = rel_to_reln (REL_RESTRICT (reln_to_rel r) s)) ∧
(r1 OO r2 = rel_to_reln (reln_to_rel r2 ∘ᵣ reln_to_rel r1)) ∧
(univ_reln s = rel_to_reln (RRUNIV s)) ∧
(tc r = rel_to_reln (reln_to_rel r)⁺) ∧
(acyclic r ⇔ irreflexive (reln_to_rel r)⁺) ∧
(irreflexive r s ⇔ irreflexive (REL_RESTRICT (reln_to_rel r) s)) ∧
(reflexive r s ⇔ reflexive (RREFL_EXP (reln_to_rel r) s)) ∧
(transitive r ⇔ transitive (reln_to_rel r)) ∧
(antisym r ⇔ antisymmetric (reln_to_rel r)) ∧
(partial_order r 𝕌(:α) ⇔ WeakOrder (reln_to_rel r)) ∧
(linear_order r 𝕌(:α) ⇔ WeakLinearOrder (reln_to_rel r)) ∧
(strict_linear_order r 𝕌(:α) ⇔ StrongLinearOrder (reln_to_rel r))
- reln_to_rel_11
-
⊢ (reln_to_rel r1 = reln_to_rel r2) ⇔ (r1 = r2)
- reln_to_rel_IS_CURRY
-
⊢ reln_to_rel = CURRY
- reln_to_rel_app
-
⊢ reln_to_rel r x y ⇔ (x,y) ∈ r
- reln_to_rel_inv
-
⊢ rel_to_reln (reln_to_rel r) = r
- rextension
-
⊢ ∀s t. (s = t) ⇔ ∀x y. (x,y) ∈ s ⇔ (x,y) ∈ t
- rrestrict_SUBSET
-
⊢ rrestrict r s ⊆ r
- rrestrict_rrestrict
-
⊢ ∀r x y. rrestrict (rrestrict r x) y = rrestrict r (x ∩ y)
- rrestrict_tc
-
⊢ ∀e e'. (e,e') ∈ tc (rrestrict r x) ⇒ (e,e') ∈ tc r
- rrestrict_to_rel_conv
-
⊢ rrestrict r s = rel_to_reln (REL_RESTRICT (reln_to_rel r) s)
- rrestrict_union
-
⊢ ∀r1 r2 s. rrestrict (r1 ∪ r2) s = rrestrict r1 s ∪ rrestrict r2 s
- rtc_ind_right
-
⊢ ∀r tc'.
(∀x. x ∈ domain r ∨ x ∈ range r ⇒ tc' x x) ∧
(∀x y. (∃z. tc' x z ∧ (z,y) ∈ r) ⇒ tc' x y) ⇒
∀x y. (x,y) ∈ tc r ⇒ tc' x y
- strict_linear_order
-
⊢ ∀r s. linear_order r s ⇒ strict_linear_order (strict r) s
- strict_linear_order_acyclic
-
⊢ ∀r s. strict_linear_order r s ⇒ acyclic r
- strict_linear_order_dom_rng
-
⊢ ∀r s x y. (x,y) ∈ r ∧ strict_linear_order r s ⇒ x ∈ s ∧ y ∈ s
- strict_linear_order_reln_to_rel_conv_UNIV
-
⊢ strict_linear_order r 𝕌(:α) ⇔ StrongLinearOrder (reln_to_rel r)
- strict_linear_order_restrict
-
⊢ ∀s r s'.
strict_linear_order r s ⇒ strict_linear_order (rrestrict r s') (s ∩ s')
- strict_linear_order_union_acyclic
-
⊢ ∀r1 r2 s.
strict_linear_order r1 s ∧ domain r2 ∪ range r2 ⊆ s ⇒
(acyclic (r1 ∪ r2) ⇔ r2 ⊆ r1)
- strict_partial_order
-
⊢ ∀r s.
partial_order r s ⇒
domain (strict r) ⊆ s ∧ range (strict r) ⊆ s ∧ transitive (strict r) ∧
antisym (strict r)
- strict_partial_order_acyclic
-
⊢ ∀r s. partial_order r s ⇒ acyclic (strict r)
- strict_rrestrict
-
⊢ ∀r s. strict (rrestrict r s) = rrestrict (strict r) s
- strict_to_rel_conv
-
⊢ strict r = rel_to_reln (STRORD (reln_to_rel r))
- subset_tc
-
⊢ r ⊆ tc r
- tc_SWAP
-
⊢ tc (IMAGE SWAP r) = IMAGE SWAP (tc r)
- tc_cases
-
⊢ ∀r x y. (x,y) ∈ tc r ⇔ (x,y) ∈ r ∨ ∃z. (x,z) ∈ tc r ∧ (z,y) ∈ tc r
- tc_cases_left
-
⊢ ∀r x y. (x,y) ∈ tc r ⇔ (x,y) ∈ r ∨ ∃z. (x,z) ∈ r ∧ (z,y) ∈ tc r
- tc_cases_right
-
⊢ ∀r x y. (x,y) ∈ tc r ⇔ (x,y) ∈ r ∨ ∃z. (x,z) ∈ tc r ∧ (z,y) ∈ r
- tc_closure
-
⊢ r ⊆ tc s ⇒ tc r ⊆ tc s
- tc_domain_range
-
⊢ ∀x y. (x,y) ∈ tc r ⇒ x ∈ domain r ∧ y ∈ range r
- tc_empty
-
⊢ ∀x y. (x,y) ∉ tc ∅
- tc_empty_eqn
-
⊢ tc ∅ = ∅
- tc_idemp
-
⊢ tc (tc r) = tc r
- tc_implication
-
⊢ ∀r1 r2.
(∀x y. (x,y) ∈ r1 ⇒ (x,y) ∈ r2) ⇒ ∀x y. (x,y) ∈ tc r1 ⇒ (x,y) ∈ tc r2
- tc_ind
-
⊢ ∀r tc'.
(∀x y. (x,y) ∈ r ⇒ tc' x y) ∧ (∀x y. (∃z. tc' x z ∧ tc' z y) ⇒ tc' x y) ⇒
∀x y. (x,y) ∈ tc r ⇒ tc' x y
- tc_ind_left
-
⊢ ∀r tc'.
(∀x y. (x,y) ∈ r ⇒ tc' x y) ∧ (∀x y. (∃z. (x,z) ∈ r ∧ tc' z y) ⇒ tc' x y) ⇒
∀x y. (x,y) ∈ tc r ⇒ tc' x y
- tc_ind_right
-
⊢ ∀r tc'.
(∀x y. (x,y) ∈ r ⇒ tc' x y) ∧ (∀x y. (∃z. tc' x z ∧ (z,y) ∈ r) ⇒ tc' x y) ⇒
∀x y. (x,y) ∈ tc r ⇒ tc' x y
- tc_mono
-
⊢ r ⊆ s ⇒ tc r ⊆ tc s
- tc_rules
-
⊢ ∀r. (∀x y. (x,y) ∈ r ⇒ (x,y) ∈ tc r) ∧
∀x y. (∃z. (x,z) ∈ tc r ∧ (z,y) ∈ tc r) ⇒ (x,y) ∈ tc r
- tc_strongind
-
⊢ ∀r tc'.
(∀x y. (x,y) ∈ r ⇒ tc' x y) ∧
(∀x y. (∃z. (x,z) ∈ tc r ∧ tc' x z ∧ (z,y) ∈ tc r ∧ tc' z y) ⇒ tc' x y) ⇒
∀x y. (x,y) ∈ tc r ⇒ tc' x y
- tc_strongind_left
-
⊢ ∀r tc'.
(∀x y. (x,y) ∈ r ⇒ tc' x y) ∧
(∀x y. (∃z. (x,z) ∈ r ∧ (z,y) ∈ tc r ∧ tc' z y) ⇒ tc' x y) ⇒
∀x y. (x,y) ∈ tc r ⇒ tc' x y
- tc_strongind_right
-
⊢ ∀r tc'.
(∀x y. (x,y) ∈ r ⇒ tc' x y) ∧
(∀x y. (∃z. (x,z) ∈ tc r ∧ tc' x z ∧ (z,y) ∈ r) ⇒ tc' x y) ⇒
∀x y. (x,y) ∈ tc r ⇒ tc' x y
- tc_to_rel_conv
-
⊢ tc r = rel_to_reln (reln_to_rel r)⁺
- tc_transitive
-
⊢ ∀r. transitive (tc r)
- tc_union
-
⊢ ∀x y. (x,y) ∈ tc r1 ⇒ ∀r2. (x,y) ∈ tc (r1 ∪ r2)
- transitive_reln_to_rel_conv
-
⊢ transitive r ⇔ transitive (reln_to_rel r)
- transitive_tc
-
⊢ ∀r. transitive r ⇒ (tc r = r)
- univ_reln_to_rel_conv
-
⊢ univ_reln s = rel_to_reln (RRUNIV s)
- upper_bounds_lem
-
⊢ ∀r s x1 x2.
transitive r ∧ x1 ∈ upper_bounds s r ∧ (x1,x2) ∈ r ⇒ x2 ∈ upper_bounds s r
- zorns_lemma
-
⊢ ∀r s.
s ≠ ∅ ∧ partial_order r s ∧ (∀t. chain t r ⇒ upper_bounds t r ≠ ∅) ⇒
∃x. x ∈ maximal_elements s r