Theory "set_relation"

Parents     pred_set

Signature

Constant Type
RREFL_EXP :(α -> α -> bool) -> (α -> bool) -> α -> α -> bool
RRUNIV :(α -> bool) -> α -> α -> bool
acyclic :(α # α -> bool) -> bool
all_choices :((α -> bool) -> bool) -> (α -> bool) -> bool
antisym :(α # α -> bool) -> bool
chain :(α -> bool) -> (α # α -> bool) -> bool
domain :(α # β -> bool) -> α -> bool
fchains :(α # α -> bool) -> (α -> bool) -> bool
finite_prefixes :(α # β -> bool) -> (β -> bool) -> bool
get_min :(α # α -> bool) -> (α -> bool) # (α # α -> bool) -> α option
irreflexive :(α # α -> bool) -> (α -> bool) -> bool
linear_order :(α # α -> bool) -> (α -> bool) -> bool
maximal_elements :(α -> bool) -> (α # α -> bool) -> α -> bool
minimal_elements :(α -> bool) -> (α # α -> bool) -> α -> bool
nth_min :(α # α -> bool) -> (α -> bool) # (α # α -> bool) -> num -> α option
num_order :(α -> num) -> (α -> bool) -> α # α -> bool
partial_order :(α # α -> bool) -> (α -> bool) -> bool
per :(α -> bool) -> ((α -> bool) -> bool) -> bool
per_restrict :((α -> bool) -> bool) -> (α -> bool) -> (α -> bool) -> bool
range :(β # α -> bool) -> α -> bool
rcomp :(α # γ -> bool) -> (γ # β -> bool) -> α # β -> bool
reflexive :(α # α -> bool) -> (α -> bool) -> bool
rel_to_reln :(α -> β -> bool) -> α # β -> bool
reln_to_rel :(α # β -> bool) -> α -> β -> bool
rrestrict :(α # α -> bool) -> (α -> bool) -> α # α -> bool
strict :(α # α -> bool) -> α # α -> bool
strict_linear_order :(α # α -> bool) -> (α -> bool) -> bool
tc :(α # α -> bool) -> α # α -> bool
transitive :(α # α -> bool) -> bool
univ_reln :(α -> bool) -> α # α -> bool
upper_bounds :(β -> bool) -> (β # α -> bool) -> α -> bool

Definitions

RREFL_EXP_def
⊢ ∀R s. RREFL_EXP R s = R ∪ᵣ (λx y. (x = y) ∧ x ∉ s)
RRUNIV_def
⊢ ∀s. RRUNIV s = (λx y. x ∈ s ∧ y ∈ s)
acyclic_def
⊢ ∀r. acyclic r ⇔ ∀x. (x,x) ∉ tc r
all_choices_def
⊢ ∀xss.
    all_choices xss =
    {IMAGE choice xss | choice | ∀xs. xs ∈ xss ⇒ choice xs ∈ xs}
antisym_def
⊢ ∀r. antisym r ⇔ ∀x y. (x,y) ∈ r ∧ (y,x) ∈ r ⇒ (x = y)
chain_def
⊢ ∀s r. chain s r ⇔ ∀x y. x ∈ s ∧ y ∈ s ⇒ (x,y) ∈ r ∨ (y,x) ∈ r
domain_def
⊢ ∀r. domain r = {x | ∃y. (x,y) ∈ r}
fchains_def
⊢ ∀r. fchains r =
      {k |
       chain k r ∧ k ≠ ∅ ∧
       ∀C. chain C r ∧ C ⊆ k ∧ (upper_bounds C r DIFF C) ∩ k ≠ ∅ ⇒
           CHOICE (upper_bounds C r DIFF C) ∈
           minimal_elements ((upper_bounds C r DIFF C) ∩ k) r}
finite_prefixes_def
⊢ ∀r s. finite_prefixes r s ⇔ ∀e. e ∈ s ⇒ FINITE {e' | (e',e) ∈ r}
get_min_def
⊢ ∀r' s r.
    get_min r' (s,r) =
    (let
       mins = minimal_elements (minimal_elements s r) r'
     in
       if SING mins then SOME (CHOICE mins) else NONE)
irreflexive_def
⊢ ∀r s. irreflexive r s ⇔ ∀x. x ∈ s ⇒ (x,x) ∉ r
linear_order_def
⊢ ∀r s.
    linear_order r s ⇔
    domain r ⊆ s ∧ range r ⊆ s ∧ transitive r ∧ antisym r ∧
    ∀x y. x ∈ s ∧ y ∈ s ⇒ (x,y) ∈ r ∨ (y,x) ∈ r
maximal_elements_def
⊢ ∀xs r.
    maximal_elements xs r =
    {x | x ∈ xs ∧ ∀x'. x' ∈ xs ∧ (x,x') ∈ r ⇒ (x = x')}
minimal_elements_def
⊢ ∀xs r.
    minimal_elements xs r =
    {x | x ∈ xs ∧ ∀x'. x' ∈ xs ∧ (x',x) ∈ r ⇒ (x = x')}
num_order_def
⊢ ∀f s. num_order f s = {(x,y) | x ∈ s ∧ y ∈ s ∧ f x ≤ f y}
partial_order_def
⊢ ∀r s.
    partial_order r s ⇔
    domain r ⊆ s ∧ range r ⊆ s ∧ transitive r ∧ reflexive r s ∧ antisym r
per_def
⊢ ∀xs xss.
    per xs xss ⇔
    BIGUNION xss ⊆ xs ∧ ∅ ∉ xss ∧
    ∀xs1 xs2. xs1 ∈ xss ∧ xs2 ∈ xss ∧ xs1 ≠ xs2 ⇒ DISJOINT xs1 xs2
per_restrict_def
⊢ ∀xss xs. per_restrict xss xs = {xs' ∩ xs | xs' ∈ xss} DELETE ∅
range_def
⊢ ∀r. range r = {y | ∃x. (x,y) ∈ r}
rcomp_def
⊢ ∀r1 r2. r1 OO r2 = {(x,y) | ∃z. (x,z) ∈ r1 ∧ (z,y) ∈ r2}
reflexive_def
⊢ ∀r s. reflexive r s ⇔ ∀x. x ∈ s ⇒ (x,x) ∈ r
rel_to_reln_def
⊢ ∀R. rel_to_reln R = {(x,y) | R x y}
reln_to_rel_def
⊢ ∀r. reln_to_rel r = (λx y. (x,y) ∈ r)
rrestrict_def
⊢ ∀r s. rrestrict r s = {(x,y) | (x,y) ∈ r ∧ x ∈ s ∧ y ∈ s}
strict_def
⊢ ∀r. strict r = {(x,y) | (x,y) ∈ r ∧ x ≠ y}
strict_linear_order_def
⊢ ∀r s.
    strict_linear_order r s ⇔
    domain r ⊆ s ∧ range r ⊆ s ∧ transitive r ∧ (∀x. (x,x) ∉ r) ∧
    ∀x y. x ∈ s ∧ y ∈ s ∧ x ≠ y ⇒ (x,y) ∈ r ∨ (y,x) ∈ r
tc_def
⊢ tc =
  (λr a0.
       ∀tc'.
         (∀a0.
            (∃x y. (a0 = (x,y)) ∧ r (x,y)) ∨
            (∃x y. (a0 = (x,y)) ∧ ∃z. tc' (x,z) ∧ tc' (z,y)) ⇒
            tc' a0) ⇒
         tc' a0)
transitive_def
⊢ ∀r. transitive r ⇔ ∀x y z. (x,y) ∈ r ∧ (y,z) ∈ r ⇒ (x,z) ∈ r
univ_reln_def
⊢ ∀xs. univ_reln xs = {(x1,x2) | x1 ∈ xs ∧ x2 ∈ xs}
upper_bounds_def
⊢ ∀s r. upper_bounds s r = {x | x ∈ range r ∧ ∀y. y ∈ s ⇒ (y,x) ∈ r}


Theorems

IN_MIN_LO
⊢ x ∈ X ⇒ linear_order lo X ⇒ y ∈ minimal_elements X lo ⇒ (y,x) ∈ lo
REL_RESTRICT_UNIV
⊢ REL_RESTRICT R 𝕌(:α) = R
RREFL_EXP_RSUBSET
⊢ R ⊆ᵣ RREFL_EXP R s
RREFL_EXP_UNIV
⊢ RREFL_EXP R 𝕌(:α) = R
WF_has_minimal_path
⊢ WF (reln_to_rel r) ⇒
  x ∈ s ⇒
  ∃y. y ∈ minimal_elements s r ∧ ((y,x) ∈ tc r ∨ (y = x))
acyclic_SWAP
⊢ acyclic (IMAGE SWAP r) ⇔ acyclic r
acyclic_WF
⊢ FINITE s ∧ acyclic r ∧ domain r ⊆ s ∧ range r ⊆ s ⇒ WF (reln_to_rel r)
acyclic_bigunion
⊢ ∀rs.
    (∀r r'.
       r ∈ rs ∧ r' ∈ rs ∧ r ≠ r' ⇒
       DISJOINT (domain r ∪ range r) (domain r' ∪ range r')) ∧
    (∀r. r ∈ rs ⇒ acyclic r) ⇒
    acyclic (BIGUNION rs)
acyclic_irreflexive
⊢ ∀r x. acyclic r ⇒ (x,x) ∉ r
acyclic_reln_to_rel_conv
⊢ acyclic r ⇔ irreflexive (reln_to_rel r)⁺
acyclic_rrestrict
⊢ ∀r s. acyclic r ⇒ acyclic (rrestrict r s)
acyclic_subset
⊢ ∀r1 r2. acyclic r1 ∧ r2 ⊆ r1 ⇒ acyclic r2
acyclic_union
⊢ ∀r r'.
    DISJOINT (domain r ∪ range r) (domain r' ∪ range r') ∧ acyclic r ∧
    acyclic r' ⇒
    acyclic (r ∪ r')
all_choices_thm
⊢ ∀x s y. x ∈ all_choices s ∧ y ∈ x ⇒ ∃z. z ∈ s ∧ y ∈ z
antisym_reln_to_rel_conv
⊢ antisym r ⇔ antisymmetric (reln_to_rel r)
antisym_subset
⊢ antisym t ⇒ s ⊆ t ⇒ antisym s
countable_per
⊢ ∀xs xss. COUNTABLE xs ∧ per xs xss ⇒ COUNTABLE xss
domain_mono
⊢ r ⊆ r' ⇒ domain r ⊆ domain r'
domain_rrestrict_SUBSET
⊢ domain (rrestrict r s) ⊆ s
domain_to_rel_conv
⊢ domain r = RDOM (reln_to_rel r)
empty_linear_order
⊢ ∀r. linear_order r ∅ ⇔ (r = ∅)
empty_strict_linear_order
⊢ ∀r. strict_linear_order r ∅ ⇔ (r = ∅)
extend_linear_order
⊢ ∀r s x.
    x ∉ s ∧ linear_order r s ⇒
    linear_order (r ∪ {(y,x) | y | y ∈ s ∪ {x}}) (s ∪ {x})
finite_acyclic_has_maximal
⊢ ∀s. FINITE s ⇒ s ≠ ∅ ⇒ ∀r. acyclic r ⇒ ∃x. x ∈ maximal_elements s r
finite_acyclic_has_maximal_path
⊢ ∀s r x.
    FINITE s ∧ acyclic r ∧ x ∈ s ∧ x ∉ maximal_elements s r ⇒
    ∃y. y ∈ maximal_elements s r ∧ (x,y) ∈ tc r
finite_acyclic_has_minimal
⊢ ∀s. FINITE s ⇒ s ≠ ∅ ⇒ ∀r. acyclic r ⇒ ∃x. x ∈ minimal_elements s r
finite_acyclic_has_minimal_path
⊢ ∀s r x.
    FINITE s ∧ acyclic r ∧ x ∈ s ∧ x ∉ minimal_elements s r ⇒
    ∃y. y ∈ minimal_elements s r ∧ (y,x) ∈ tc r
finite_linear_order_has_maximal
⊢ ∀s r. FINITE s ∧ linear_order r s ∧ s ≠ ∅ ⇒ ∃x. x ∈ maximal_elements s r
finite_linear_order_has_minimal
⊢ ∀s r. FINITE s ∧ linear_order r s ∧ s ≠ ∅ ⇒ ∃x. x ∈ minimal_elements s r
finite_prefix_linear_order_has_unique_minimal
⊢ ∀r s s'.
    linear_order r s ∧ finite_prefixes r s ∧ x ∈ s' ∧ s' ⊆ s ⇒
    SING (minimal_elements s' r)
finite_prefix_po_has_minimal_path
⊢ ∀r s x s'.
    partial_order r s ∧ finite_prefixes r s ∧ x ∉ minimal_elements s' r ∧
    x ∈ s' ∧ s' ⊆ s ⇒
    ∃x'. x' ∈ minimal_elements s' r ∧ (x',x) ∈ r
finite_prefixes_comp
⊢ ∀r1 r2 s1 s2.
    finite_prefixes r1 s1 ∧ finite_prefixes r2 s2 ∧
    {x | ∃y. y ∈ s2 ∧ (x,y) ∈ r2} ⊆ s1 ⇒
    finite_prefixes (r1 OO r2) s2
finite_prefixes_inj_image
⊢ ∀f r s.
    (∀x y. (f x = f y) ⇒ (x = y)) ∧ finite_prefixes r s ⇒
    finite_prefixes {(f x,f y) | (x,y) ∈ r} (IMAGE f s)
finite_prefixes_range
⊢ ∀r s t.
    finite_prefixes r s ∧ DISJOINT t (range r) ⇒ finite_prefixes r (s ∪ t)
finite_prefixes_subset
⊢ ∀r s s'.
    finite_prefixes r s ∧ s' ⊆ s ⇒
    finite_prefixes r s' ∧ finite_prefixes (rrestrict r s') s'
finite_prefixes_subset_r
⊢ ∀r r' s. finite_prefixes r s ∧ r' ⊆ r ⇒ finite_prefixes r' s
finite_prefixes_subset_rs
⊢ ∀r s r' s'. finite_prefixes r s ⇒ r' ⊆ r ⇒ s' ⊆ s ⇒ finite_prefixes r' s'
finite_prefixes_subset_s
⊢ ∀r s s'. finite_prefixes r s ∧ s' ⊆ s ⇒ finite_prefixes r s'
finite_prefixes_union
⊢ ∀r1 r2 s1 s2.
    finite_prefixes r1 s1 ∧ finite_prefixes r2 s2 ⇒
    finite_prefixes (r1 ∪ r2) (s1 ∩ s2)
finite_strict_linear_order_has_maximal
⊢ ∀s r.
    FINITE s ∧ strict_linear_order r s ∧ s ≠ ∅ ⇒ ∃x. x ∈ maximal_elements s r
finite_strict_linear_order_has_minimal
⊢ ∀s r.
    FINITE s ∧ strict_linear_order r s ∧ s ≠ ∅ ⇒ ∃x. x ∈ minimal_elements s r
in_dom_rg
⊢ (x,y) ∈ r ⇒ x ∈ domain r ∧ y ∈ range r
in_domain
⊢ ∀x r. x ∈ domain r ⇔ ∃y. (x,y) ∈ r
in_range
⊢ ∀y r. y ∈ range r ⇔ ∃x. (x,y) ∈ r
in_rel_to_reln
⊢ xy ∈ rel_to_reln R ⇔ R (FST xy) (SND xy)
in_rrestrict
⊢ ∀x y r s. (x,y) ∈ rrestrict r s ⇔ (x,y) ∈ r ∧ x ∈ s ∧ y ∈ s
in_rrestrict_alt
⊢ x ∈ rrestrict r s ⇔ x ∈ r ∧ FST x ∈ s ∧ SND x ∈ s
irreflexive_reln_to_rel_conv
⊢ irreflexive r s ⇔ irreflexive (REL_RESTRICT (reln_to_rel r) s)
irreflexive_reln_to_rel_conv_UNIV
⊢ irreflexive r 𝕌(:α) ⇔ irreflexive (reln_to_rel r)
linear_order
⊢ ∀r s. strict_linear_order r s ⇒ linear_order (r ∪ {(x,x) | x ∈ s}) s
linear_order_dom_rg
⊢ linear_order lo X ⇒ (domain lo ∪ range lo = X)
linear_order_dom_rng
⊢ ∀r s x y. (x,y) ∈ r ∧ linear_order r s ⇒ x ∈ s ∧ y ∈ s
linear_order_in_set
⊢ linear_order lo X ⇒ (x,y) ∈ lo ⇒ x ∈ X ∧ y ∈ X
linear_order_num_order
⊢ ∀f s t. INJ f s t ⇒ linear_order (num_order f s) s
linear_order_of_countable_po
⊢ ∀r s.
    COUNTABLE s ∧ partial_order r s ∧ finite_prefixes r s ⇒
    ∃r'. linear_order r' s ∧ finite_prefixes r' s ∧ r ⊆ r'
linear_order_refl
⊢ linear_order lo X ⇒ x ∈ X ⇒ (x,x) ∈ lo
linear_order_reln_to_rel_conv_UNIV
⊢ linear_order r 𝕌(:α) ⇔ WeakLinearOrder (reln_to_rel r)
linear_order_restrict
⊢ ∀s r s'. linear_order r s ⇒ linear_order (rrestrict r s') (s ∩ s')
linear_order_subset
⊢ ∀r s s'. linear_order r s ∧ s' ⊆ s ⇒ linear_order (rrestrict r s') s'
maximal_TC
⊢ ∀s r.
    domain r ⊆ s ∧ range r ⊆ s ⇒
    (maximal_elements s (tc r) = maximal_elements s r)
maximal_linear_order
⊢ ∀s r x y. y ∈ s ∧ linear_order r s ∧ x ∈ maximal_elements s r ⇒ (y,x) ∈ r
maximal_union
⊢ ∀e s r1 r2.
    e ∈ maximal_elements s (r1 ∪ r2) ⇒
    e ∈ maximal_elements s r1 ∧ e ∈ maximal_elements s r2
minimal_TC
⊢ ∀s r.
    domain r ⊆ s ∧ range r ⊆ s ⇒
    (minimal_elements s (tc r) = minimal_elements s r)
minimal_elements_SWAP
⊢ minimal_elements xs (IMAGE SWAP r) = maximal_elements xs r
minimal_elements_mono
⊢ r ⊆ r' ⇒ minimal_elements xs r' ⊆ minimal_elements xs r
minimal_elements_rrestrict
⊢ minimal_elements xs (rrestrict r xs) = minimal_elements xs r
minimal_elements_subset
⊢ minimal_elements s lo ⊆ s
minimal_linear_order
⊢ ∀s r x y. y ∈ s ∧ linear_order r s ∧ x ∈ minimal_elements s r ⇒ (x,y) ∈ r
minimal_linear_order_unique
⊢ ∀r s s' x y.
    linear_order r s ∧ x ∈ minimal_elements s' r ∧ y ∈ minimal_elements s' r ∧
    s' ⊆ s ⇒
    (x = y)
minimal_union
⊢ ∀e s r1 r2.
    e ∈ minimal_elements s (r1 ∪ r2) ⇒
    e ∈ minimal_elements s r1 ∧ e ∈ minimal_elements s r2
nat_order_iso_thm
⊢ ∀f s.
    (∀n m. (f m = f n) ∧ f m ≠ NONE ⇒ (m = n)) ∧
    (∀x. x ∈ s ⇒ ∃m. f m = SOME x) ∧ (∀m x. (f m = SOME x) ⇒ x ∈ s) ⇒
    linear_order {(x,y) | (∃m n. m ≤ n ∧ (f m = SOME x) ∧ (f n = SOME y))} s ∧
    finite_prefixes {(x,y) | (∃m n. m ≤ n ∧ (f m = SOME x) ∧ (f n = SOME y))}
      s
nth_min_compute
⊢ (∀s r' r. nth_min r' (s,r) 0 = get_min r' (s,r)) ∧
  (∀s r' r n.
     nth_min r' (s,r) (NUMERAL (BIT1 n)) =
     (let
        min = get_min r' (s,r)
      in
        if min = NONE then NONE
        else nth_min r' (s DELETE THE min,r) (NUMERAL (BIT1 n) − 1))) ∧
  ∀s r' r n.
    nth_min r' (s,r) (NUMERAL (BIT2 n)) =
    (let
       min = get_min r' (s,r)
     in
       if min = NONE then NONE
       else nth_min r' (s DELETE THE min,r) (NUMERAL (BIT1 n)))
nth_min_def
⊢ (∀s r' r. nth_min r' (s,r) 0 = get_min r' (s,r)) ∧
  ∀s r' r n.
    nth_min r' (s,r) (SUC n) =
    (let
       min = get_min r' (s,r)
     in
       if min = NONE then NONE else nth_min r' (s DELETE THE min,r) n)
nth_min_ind
⊢ ∀P. (∀r' s r. P r' (s,r) 0) ∧
      (∀r' s r n.
         (∀min.
            (min = get_min r' (s,r)) ∧ min ≠ NONE ⇒
            P r' (s DELETE THE min,r) n) ⇒
         P r' (s,r) (SUC n)) ⇒
      ∀v v1 v2 v3. P v (v1,v2) v3
num_order_finite_prefix
⊢ ∀f s t. INJ f s t ⇒ finite_prefixes (num_order f s) s
partial_order_dom_rng
⊢ ∀r s x y. (x,y) ∈ r ∧ partial_order r s ⇒ x ∈ s ∧ y ∈ s
partial_order_linear_order
⊢ ∀r s. linear_order r s ⇒ partial_order r s
partial_order_reln_to_rel_conv
⊢ partial_order r s ⇔
  reln_to_rel r ⊆ᵣ RRUNIV s ∧ WeakOrder (RREFL_EXP (reln_to_rel r) s)
partial_order_reln_to_rel_conv_UNIV
⊢ partial_order r 𝕌(:α) ⇔ WeakOrder (reln_to_rel r)
partial_order_subset
⊢ ∀r s s'. partial_order r s ∧ s' ⊆ s ⇒ partial_order (rrestrict r s') s'
per_delete
⊢ ∀xs xss e.
    per xs xss ⇒
    per (xs DELETE e) {es | es ∈ IMAGE (λes. es DELETE e) xss ∧ es ≠ ∅}
per_restrict_per
⊢ ∀r s s'. per s r ⇒ per s' (per_restrict r s')
range_mono
⊢ r ⊆ r' ⇒ range r ⊆ range r'
range_rrestrict_SUBSET
⊢ range (rrestrict r s) ⊆ s
range_to_rel_conv
⊢ range r = RRANGE (reln_to_rel r)
rcomp_to_rel_conv
⊢ r1 OO r2 = rel_to_reln (reln_to_rel r2 ∘ᵣ reln_to_rel r1)
reflexive_reln_to_rel_conv
⊢ reflexive r s ⇔ reflexive (RREFL_EXP (reln_to_rel r) s)
reflexive_reln_to_rel_conv_UNIV
⊢ reflexive r 𝕌(:α) ⇔ reflexive (reln_to_rel r)
rel_to_reln_11
⊢ (rel_to_reln R1 = rel_to_reln R2) ⇔ (R1 = R2)
rel_to_reln_IS_UNCURRY
⊢ rel_to_reln = UNCURRY
rel_to_reln_inv
⊢ reln_to_rel (rel_to_reln R) = R
rel_to_reln_swap
⊢ (r = rel_to_reln R) ⇔ (reln_to_rel r = R)
reln_rel_conv_thms
⊢ ((xy ∈ rel_to_reln R ⇔ R (FST xy) (SND xy)) ∧
   (reln_to_rel r x y ⇔ (x,y) ∈ r) ∧ (reln_to_rel (rel_to_reln R) = R) ∧
   (rel_to_reln (reln_to_rel r) = r) ∧
   ((reln_to_rel r1 = reln_to_rel r2) ⇔ (r1 = r2)) ∧
   ((rel_to_reln R1 = rel_to_reln R2) ⇔ (R1 = R2))) ∧
  (RREFL_EXP R 𝕌(:α) = R) ∧ (REL_RESTRICT R 𝕌(:α) = R) ∧
  (domain r = RDOM (reln_to_rel r)) ∧ (range r = RRANGE (reln_to_rel r)) ∧
  (strict r = rel_to_reln (STRORD (reln_to_rel r))) ∧
  (rrestrict r s = rel_to_reln (REL_RESTRICT (reln_to_rel r) s)) ∧
  (r1 OO r2 = rel_to_reln (reln_to_rel r2 ∘ᵣ reln_to_rel r1)) ∧
  (univ_reln s = rel_to_reln (RRUNIV s)) ∧
  (tc r = rel_to_reln (reln_to_rel r)⁺) ∧
  (acyclic r ⇔ irreflexive (reln_to_rel r)⁺) ∧
  (irreflexive r s ⇔ irreflexive (REL_RESTRICT (reln_to_rel r) s)) ∧
  (reflexive r s ⇔ reflexive (RREFL_EXP (reln_to_rel r) s)) ∧
  (transitive r ⇔ transitive (reln_to_rel r)) ∧
  (antisym r ⇔ antisymmetric (reln_to_rel r)) ∧
  (partial_order r 𝕌(:α) ⇔ WeakOrder (reln_to_rel r)) ∧
  (linear_order r 𝕌(:α) ⇔ WeakLinearOrder (reln_to_rel r)) ∧
  (strict_linear_order r 𝕌(:α) ⇔ StrongLinearOrder (reln_to_rel r))
reln_to_rel_11
⊢ (reln_to_rel r1 = reln_to_rel r2) ⇔ (r1 = r2)
reln_to_rel_IS_CURRY
⊢ reln_to_rel = CURRY
reln_to_rel_app
⊢ reln_to_rel r x y ⇔ (x,y) ∈ r
reln_to_rel_inv
⊢ rel_to_reln (reln_to_rel r) = r
rextension
⊢ ∀s t. (s = t) ⇔ ∀x y. (x,y) ∈ s ⇔ (x,y) ∈ t
rrestrict_SUBSET
⊢ rrestrict r s ⊆ r
rrestrict_rrestrict
⊢ ∀r x y. rrestrict (rrestrict r x) y = rrestrict r (x ∩ y)
rrestrict_tc
⊢ ∀e e'. (e,e') ∈ tc (rrestrict r x) ⇒ (e,e') ∈ tc r
rrestrict_to_rel_conv
⊢ rrestrict r s = rel_to_reln (REL_RESTRICT (reln_to_rel r) s)
rrestrict_union
⊢ ∀r1 r2 s. rrestrict (r1 ∪ r2) s = rrestrict r1 s ∪ rrestrict r2 s
rtc_ind_right
⊢ ∀r tc'.
    (∀x. x ∈ domain r ∨ x ∈ range r ⇒ tc' x x) ∧
    (∀x y. (∃z. tc' x z ∧ (z,y) ∈ r) ⇒ tc' x y) ⇒
    ∀x y. (x,y) ∈ tc r ⇒ tc' x y
strict_linear_order
⊢ ∀r s. linear_order r s ⇒ strict_linear_order (strict r) s
strict_linear_order_acyclic
⊢ ∀r s. strict_linear_order r s ⇒ acyclic r
strict_linear_order_dom_rng
⊢ ∀r s x y. (x,y) ∈ r ∧ strict_linear_order r s ⇒ x ∈ s ∧ y ∈ s
strict_linear_order_reln_to_rel_conv_UNIV
⊢ strict_linear_order r 𝕌(:α) ⇔ StrongLinearOrder (reln_to_rel r)
strict_linear_order_restrict
⊢ ∀s r s'.
    strict_linear_order r s ⇒ strict_linear_order (rrestrict r s') (s ∩ s')
strict_linear_order_union_acyclic
⊢ ∀r1 r2 s.
    strict_linear_order r1 s ∧ domain r2 ∪ range r2 ⊆ s ⇒
    (acyclic (r1 ∪ r2) ⇔ r2 ⊆ r1)
strict_partial_order
⊢ ∀r s.
    partial_order r s ⇒
    domain (strict r) ⊆ s ∧ range (strict r) ⊆ s ∧ transitive (strict r) ∧
    antisym (strict r)
strict_partial_order_acyclic
⊢ ∀r s. partial_order r s ⇒ acyclic (strict r)
strict_rrestrict
⊢ ∀r s. strict (rrestrict r s) = rrestrict (strict r) s
strict_to_rel_conv
⊢ strict r = rel_to_reln (STRORD (reln_to_rel r))
subset_tc
⊢ r ⊆ tc r
tc_SWAP
⊢ tc (IMAGE SWAP r) = IMAGE SWAP (tc r)
tc_cases
⊢ ∀r x y. (x,y) ∈ tc r ⇔ (x,y) ∈ r ∨ ∃z. (x,z) ∈ tc r ∧ (z,y) ∈ tc r
tc_cases_left
⊢ ∀r x y. (x,y) ∈ tc r ⇔ (x,y) ∈ r ∨ ∃z. (x,z) ∈ r ∧ (z,y) ∈ tc r
tc_cases_right
⊢ ∀r x y. (x,y) ∈ tc r ⇔ (x,y) ∈ r ∨ ∃z. (x,z) ∈ tc r ∧ (z,y) ∈ r
tc_closure
⊢ r ⊆ tc s ⇒ tc r ⊆ tc s
tc_domain_range
⊢ ∀x y. (x,y) ∈ tc r ⇒ x ∈ domain r ∧ y ∈ range r
tc_empty
⊢ ∀x y. (x,y) ∉ tc ∅
tc_empty_eqn
⊢ tc ∅ = ∅
tc_idemp
⊢ tc (tc r) = tc r
tc_implication
⊢ ∀r1 r2.
    (∀x y. (x,y) ∈ r1 ⇒ (x,y) ∈ r2) ⇒ ∀x y. (x,y) ∈ tc r1 ⇒ (x,y) ∈ tc r2
tc_ind
⊢ ∀r tc'.
    (∀x y. (x,y) ∈ r ⇒ tc' x y) ∧ (∀x y. (∃z. tc' x z ∧ tc' z y) ⇒ tc' x y) ⇒
    ∀x y. (x,y) ∈ tc r ⇒ tc' x y
tc_ind_left
⊢ ∀r tc'.
    (∀x y. (x,y) ∈ r ⇒ tc' x y) ∧ (∀x y. (∃z. (x,z) ∈ r ∧ tc' z y) ⇒ tc' x y) ⇒
    ∀x y. (x,y) ∈ tc r ⇒ tc' x y
tc_ind_right
⊢ ∀r tc'.
    (∀x y. (x,y) ∈ r ⇒ tc' x y) ∧ (∀x y. (∃z. tc' x z ∧ (z,y) ∈ r) ⇒ tc' x y) ⇒
    ∀x y. (x,y) ∈ tc r ⇒ tc' x y
tc_mono
⊢ r ⊆ s ⇒ tc r ⊆ tc s
tc_rules
⊢ ∀r. (∀x y. (x,y) ∈ r ⇒ (x,y) ∈ tc r) ∧
      ∀x y. (∃z. (x,z) ∈ tc r ∧ (z,y) ∈ tc r) ⇒ (x,y) ∈ tc r
tc_strongind
⊢ ∀r tc'.
    (∀x y. (x,y) ∈ r ⇒ tc' x y) ∧
    (∀x y. (∃z. (x,z) ∈ tc r ∧ tc' x z ∧ (z,y) ∈ tc r ∧ tc' z y) ⇒ tc' x y) ⇒
    ∀x y. (x,y) ∈ tc r ⇒ tc' x y
tc_strongind_left
⊢ ∀r tc'.
    (∀x y. (x,y) ∈ r ⇒ tc' x y) ∧
    (∀x y. (∃z. (x,z) ∈ r ∧ (z,y) ∈ tc r ∧ tc' z y) ⇒ tc' x y) ⇒
    ∀x y. (x,y) ∈ tc r ⇒ tc' x y
tc_strongind_right
⊢ ∀r tc'.
    (∀x y. (x,y) ∈ r ⇒ tc' x y) ∧
    (∀x y. (∃z. (x,z) ∈ tc r ∧ tc' x z ∧ (z,y) ∈ r) ⇒ tc' x y) ⇒
    ∀x y. (x,y) ∈ tc r ⇒ tc' x y
tc_to_rel_conv
⊢ tc r = rel_to_reln (reln_to_rel r)⁺
tc_transitive
⊢ ∀r. transitive (tc r)
tc_union
⊢ ∀x y. (x,y) ∈ tc r1 ⇒ ∀r2. (x,y) ∈ tc (r1 ∪ r2)
transitive_reln_to_rel_conv
⊢ transitive r ⇔ transitive (reln_to_rel r)
transitive_tc
⊢ ∀r. transitive r ⇒ (tc r = r)
univ_reln_to_rel_conv
⊢ univ_reln s = rel_to_reln (RRUNIV s)
upper_bounds_lem
⊢ ∀r s x1 x2.
    transitive r ∧ x1 ∈ upper_bounds s r ∧ (x1,x2) ∈ r ⇒ x2 ∈ upper_bounds s r
zorns_lemma
⊢ ∀r s.
    s ≠ ∅ ∧ partial_order r s ∧ (∀t. chain t r ⇒ upper_bounds t r ≠ ∅) ⇒
    ∃x. x ∈ maximal_elements s r