- BIGINTER_2
-
⊢ ∀s t. BIGINTER {s; t} = s ∩ t
- BIGUNION_2
-
⊢ ∀s t. BIGUNION {s; t} = s ∪ t
- CLOSED_IN_BIGINTER
-
⊢ ∀top k. k ≠ ∅ ∧ (∀s. s ∈ k ⇒ closed_in top s) ⇒ closed_in top (BIGINTER k)
- CLOSED_IN_BIGUNION
-
⊢ ∀top s.
FINITE s ∧ (∀t. t ∈ s ⇒ closed_in top t) ⇒ closed_in top (BIGUNION s)
- CLOSED_IN_DIFF
-
⊢ ∀top s t. closed_in top s ∧ open_in top t ⇒ closed_in top (s DIFF t)
- CLOSED_IN_EMPTY
-
⊢ ∀top. closed_in top ∅
- CLOSED_IN_IMP_SUBSET
-
⊢ ∀top s t. closed_in (subtopology top s) t ⇒ t ⊆ s
- CLOSED_IN_INTER
-
⊢ ∀top s t. closed_in top s ∧ closed_in top t ⇒ closed_in top (s ∩ t)
- CLOSED_IN_OPEN_IN_COMPL
-
⊢ ∀top. closed top ⇒ ∀s. closed_in top s ⇔ open_in top (COMPL s)
- CLOSED_IN_SUBSET
-
⊢ ∀top s. closed_in top s ⇒ s ⊆ topspace top
- CLOSED_IN_SUBTOPOLOGY
-
⊢ ∀top u s.
closed_in (subtopology top u) s ⇔ ∃t. closed_in top t ∧ (s = t ∩ u)
- CLOSED_IN_SUBTOPOLOGY_EMPTY
-
⊢ ∀top s. closed_in (subtopology top ∅) s ⇔ (s = ∅)
- CLOSED_IN_SUBTOPOLOGY_REFL
-
⊢ ∀top u. closed_in (subtopology top u) u ⇔ u ⊆ topspace top
- CLOSED_IN_SUBTOPOLOGY_UNION
-
⊢ ∀top s t u.
closed_in (subtopology top t) s ∧ closed_in (subtopology top u) s ⇒
closed_in (subtopology top (t ∪ u)) s
- CLOSED_IN_TOPSPACE
-
⊢ ∀top. closed_in top (topspace top)
- CLOSED_IN_UNION
-
⊢ ∀top s t. closed_in top s ∧ closed_in top t ⇒ closed_in top (s ∪ t)
- CLOSED_LIMPT
-
⊢ ∀top. closed top ⇒ ∀S'. closed_in top S' ⇔ ∀x. limpt top x S' ⇒ S' x
- HULLS_EQ
-
⊢ ∀P s t.
(∀f. (∀s. s ∈ f ⇒ P s) ⇒ P (BIGINTER f)) ∧ s ⊆ P hull t ∧ t ⊆ P hull s ⇒
(P hull s = P hull t)
- HULL_ANTIMONO
-
⊢ ∀P Q s. P ⊆ Q ⇒ Q hull s ⊆ P hull s
- HULL_EQ
-
⊢ ∀P s. (∀f. (∀s. s ∈ f ⇒ P s) ⇒ P (BIGINTER f)) ⇒ ((P hull s = s) ⇔ P s)
- HULL_HULL
-
⊢ ∀P s. P hull (P hull s) = P hull s
- HULL_IMAGE
-
⊢ ∀P f s.
(∀s. P (P hull s)) ∧ (∀s. P (IMAGE f s) ⇔ P s) ∧
(∀x y. (f x = f y) ⇒ (x = y)) ∧ (∀y. ∃x. f x = y) ⇒
(P hull IMAGE f s = IMAGE f (P hull s))
- HULL_IMAGE_GALOIS
-
⊢ ∀P f g s.
(∀s. P (P hull s)) ∧ (∀s. P s ⇒ P (IMAGE f s)) ∧
(∀s. P s ⇒ P (IMAGE g s)) ∧ (∀s t. s ⊆ IMAGE g t ⇔ IMAGE f s ⊆ t) ⇒
(P hull IMAGE f s = IMAGE f (P hull s))
- HULL_IMAGE_SUBSET
-
⊢ ∀P f s.
P (P hull s) ∧ (∀s. P s ⇒ P (IMAGE f s)) ⇒
P hull IMAGE f s ⊆ IMAGE f (P hull s)
- HULL_INC
-
⊢ ∀P s x. x ∈ s ⇒ x ∈ P hull s
- HULL_INDUCT
-
⊢ ∀P p s. (∀x. x ∈ s ⇒ p x) ∧ P {x | p x} ⇒ ∀x. x ∈ P hull s ⇒ p x
- HULL_MINIMAL
-
⊢ ∀P s t. s ⊆ t ∧ P t ⇒ P hull s ⊆ t
- HULL_MONO
-
⊢ ∀P s t. s ⊆ t ⇒ P hull s ⊆ P hull t
- HULL_P
-
⊢ ∀P s. P s ⇒ (P hull s = s)
- HULL_P_AND_Q
-
⊢ ∀P Q.
(∀f. (∀s. s ∈ f ⇒ P s) ⇒ P (BIGINTER f)) ∧
(∀f. (∀s. s ∈ f ⇒ Q s) ⇒ Q (BIGINTER f)) ∧ (∀s. Q s ⇒ Q (P hull s)) ⇒
((λx. P x ∧ Q x) hull s = P hull (Q hull s))
- HULL_REDUNDANT
-
⊢ ∀P a s. a ∈ P hull s ⇒ (P hull (a INSERT s) = P hull s)
- HULL_REDUNDANT_EQ
-
⊢ ∀P a s. a ∈ P hull s ⇔ (P hull (a INSERT s) = P hull s)
- HULL_SUBSET
-
⊢ ∀P s. s ⊆ P hull s
- HULL_UNION
-
⊢ ∀P s t. P hull s ∪ t = P hull (P hull s) ∪ (P hull t)
- HULL_UNION_LEFT
-
⊢ ∀P s t. P hull s ∪ t = P hull (P hull s) ∪ t
- HULL_UNION_RIGHT
-
⊢ ∀P s t. P hull s ∪ t = P hull s ∪ (P hull t)
- HULL_UNION_SUBSET
-
⊢ ∀P s t. (P hull s) ∪ (P hull t) ⊆ P hull s ∪ t
- HULL_UNIQUE
-
⊢ ∀P s t. s ⊆ t ∧ P t ∧ (∀t'. s ⊆ t' ∧ P t' ⇒ t ⊆ t') ⇒ (P hull s = t)
- ISTOPOLOGY_OPEN_IN
-
⊢ ∀top. istopology (open_in top)
- ISTOPOLOGY_SUBTOPOLOGY
-
⊢ ∀top u. istopology {s ∩ u | open_in top s}
- IS_HULL
-
⊢ ∀P s. (∀f. (∀s. s ∈ f ⇒ P s) ⇒ P (BIGINTER f)) ⇒ (P s ⇔ ∃t. s = P hull t)
- OPEN_IN_BIGINTER
-
⊢ ∀top s.
FINITE s ∧ s ≠ ∅ ∧ (∀t. t ∈ s ⇒ open_in top t) ⇒ open_in top (BIGINTER s)
- OPEN_IN_BIGUNION
-
⊢ ∀top k. (∀s. s ∈ k ⇒ open_in top s) ⇒ open_in top (BIGUNION k)
- OPEN_IN_CLAUSES
-
⊢ ∀top.
open_in top ∅ ∧
(∀s t. open_in top s ∧ open_in top t ⇒ open_in top (s ∩ t)) ∧
∀k. (∀s. s ∈ k ⇒ open_in top s) ⇒ open_in top (BIGUNION k)
- OPEN_IN_CLOSED_IN
-
⊢ ∀top s.
s ⊆ topspace top ⇒ (open_in top s ⇔ closed_in top (topspace top DIFF s))
- OPEN_IN_CLOSED_IN_EQ
-
⊢ ∀top s.
open_in top s ⇔ s ⊆ topspace top ∧ closed_in top (topspace top DIFF s)
- OPEN_IN_DIFF
-
⊢ ∀top s t. open_in top s ∧ closed_in top t ⇒ open_in top (s DIFF t)
- OPEN_IN_EMPTY
-
⊢ ∀top. open_in top ∅
- OPEN_IN_IMP_SUBSET
-
⊢ ∀top s t. open_in (subtopology top s) t ⇒ t ⊆ s
- OPEN_IN_INTER
-
⊢ ∀top s t. open_in top s ∧ open_in top t ⇒ open_in top (s ∩ t)
- OPEN_IN_SUBOPEN
-
⊢ ∀top s. open_in top s ⇔ ∀x. x ∈ s ⇒ ∃t. open_in top t ∧ x ∈ t ∧ t ⊆ s
- OPEN_IN_SUBSET
-
⊢ ∀top s. open_in top s ⇒ s ⊆ topspace top
- OPEN_IN_SUBTOPOLOGY
-
⊢ ∀top u s. open_in (subtopology top u) s ⇔ ∃t. open_in top t ∧ (s = t ∩ u)
- OPEN_IN_SUBTOPOLOGY_EMPTY
-
⊢ ∀top s. open_in (subtopology top ∅) s ⇔ (s = ∅)
- OPEN_IN_SUBTOPOLOGY_REFL
-
⊢ ∀top u. open_in (subtopology top u) u ⇔ u ⊆ topspace top
- OPEN_IN_SUBTOPOLOGY_UNION
-
⊢ ∀top s t u.
open_in (subtopology top t) s ∧ open_in (subtopology top u) s ⇒
open_in (subtopology top (t ∪ u)) s
- OPEN_IN_TOPSPACE
-
⊢ ∀top. open_in top (topspace top)
- OPEN_IN_UNION
-
⊢ ∀top s t. open_in top s ∧ open_in top t ⇒ open_in top (s ∪ t)
- OPEN_NEIGH
-
⊢ ∀S' top. open_in top S' ⇔ ∀x. S' x ⇒ ∃N. neigh top (N,x) ∧ N ⊆ S'
- OPEN_OWN_NEIGH
-
⊢ ∀S' top x. open_in top S' ∧ S' x ⇒ neigh top (S',x)
- OPEN_SUBOPEN
-
⊢ ∀S' top. open_in top S' ⇔ ∀x. S' x ⇒ ∃P. P x ∧ open_in top P ∧ P ⊆ S'
- OPEN_UNOPEN
-
⊢ ∀S' top. open_in top S' ⇔ (BIGUNION {P | open_in top P ∧ P ⊆ S'} = S')
- P_HULL
-
⊢ ∀P s. (∀f. (∀s. s ∈ f ⇒ P s) ⇒ P (BIGINTER f)) ⇒ P (P hull s)
- SUBSET_HULL
-
⊢ ∀P s t. P t ⇒ (P hull s ⊆ t ⇔ s ⊆ t)
- SUBTOPOLOGY_SUPERSET
-
⊢ ∀top s. topspace top ⊆ s ⇒ (subtopology top s = top)
- SUBTOPOLOGY_TOPSPACE
-
⊢ ∀top. subtopology top (topspace top) = top
- SUBTOPOLOGY_UNIV
-
⊢ ∀top. subtopology top 𝕌(:α) = top
- TOPOLOGY_EQ
-
⊢ ∀top1 top2. (top1 = top2) ⇔ ∀s. open_in top1 s ⇔ open_in top2 s
- TOPSPACE_SUBTOPOLOGY
-
⊢ ∀top u. topspace (subtopology top u) = topspace top ∩ u
- closed_topspace
-
⊢ ∀top. closed top ⇒ (topspace top = 𝕌(:α))
- open_topspace
-
⊢ ∀top. open top ⇒ (topspace top = 𝕌(:α))