prove_abs_fn_onto

Drule.prove_abs_fn_onto : thm -> thm

Proves that a type abstraction function is onto (surjective).

If th is a theorem of the form returned by the function define_new_type_bijections:

   |- (!a. abs(rep a) = a) /\ (!r. P r = (rep(abs r) = r))

then prove_abs_fn_onto th proves from this theorem that the function abs is onto, returning the theorem:

   |- !a. ?r. (a = abs r) /\ P r

Failure

Fails if applied to a theorem not of the form shown above.

See also

Definition.new_type_definition, Drule.define_new_type_bijections, Drule.prove_abs_fn_one_one, Drule.prove_rep_fn_one_one, Drule.prove_rep_fn_onto