prove_abs_fn_onto
Drule.prove_abs_fn_onto : thm -> thm
Proves that a type abstraction function is onto (surjective).
If th
is a theorem of the form returned by the function
define_new_type_bijections
:
|- (!a. abs(rep a) = a) /\ (!r. P r = (rep(abs r) = r))
then prove_abs_fn_onto th
proves from this theorem that
the function abs
is onto, returning the theorem:
|- !a. ?r. (a = abs r) /\ P r
Fails if applied to a theorem not of the form shown above.
Definition.new_type_definition
,
Drule.define_new_type_bijections
,
Drule.prove_abs_fn_one_one
,
Drule.prove_rep_fn_one_one
,
Drule.prove_rep_fn_onto