prove_rep_fn_onto
Drule.prove_rep_fn_onto : thm -> thm
Proves that a type representation function is onto (surjective).
If th
is a theorem of the form returned by the function
define_new_type_bijections
:
|- (!a. abs(rep a) = a) /\ (!r. P r = (rep(abs r) = r))
then prove_rep_fn_onto th
proves from this theorem that
the function rep
is onto the set of values that satisfy
P
, returning the theorem:
|- !r. P r = (?a. r = rep a)
Fails if applied to a theorem not of the form shown above.
Definition.new_type_definition
,
Drule.define_new_type_bijections
,
Drule.prove_abs_fn_one_one
,
Drule.prove_abs_fn_onto
,
Drule.prove_rep_fn_one_one