Theory "option"

Parents     sum   one   normalForms

Signature

Type Arity
option 1
Constant Type
IS_NONE :α option -> bool
IS_SOME :α option -> bool
NONE :α option
OPTION_APPLY :(β -> α) option -> β option -> α option
OPTION_BIND :β option -> (β -> α option) -> α option
OPTION_CHOICE :α option -> α option -> α option
OPTION_GUARD :bool -> unit option
OPTION_IGNORE_BIND :β option -> α option -> α option
OPTION_JOIN :α option option -> α option
OPTION_MAP :(α -> β) -> α option -> β option
OPTION_MAP2 :(β -> γ -> α) -> β option -> γ option -> α option
OPTREL :(α -> β -> bool) -> α option -> β option -> bool
SOME :α -> α option
THE :α option -> α
option_ABS :α + unit -> α option
option_CASE :α option -> β -> (α -> β) -> β
option_REP :α option -> α + unit
some :(α -> bool) -> α option

Definitions

option_TY_DEF
|- ∃rep. TYPE_DEFINITION (λx. T) rep
option_REP_ABS_DEF
|- (∀a. option_ABS (option_REP a) = a) ∧
   ∀r. (λx. T) r ⇔ (option_REP (option_ABS r) = r)
SOME_DEF
|- ∀x. SOME x = option_ABS (INL x)
NONE_DEF
|- NONE = option_ABS (INR ())
option_case_def
|- (∀v f. option_CASE NONE v f = v) ∧ ∀x v f. option_CASE (SOME x) v f = f x
OPTION_MAP_DEF
|- (∀f x. OPTION_MAP f (SOME x) = SOME (f x)) ∧ ∀f. OPTION_MAP f NONE = NONE
IS_SOME_DEF
|- (∀x. IS_SOME (SOME x) ⇔ T) ∧ (IS_SOME NONE ⇔ F)
IS_NONE_DEF
|- (∀x. IS_NONE (SOME x) ⇔ F) ∧ (IS_NONE NONE ⇔ T)
THE_DEF
|- ∀x. THE (SOME x) = x
OPTION_MAP2_DEF
|- ∀f x y.
     OPTION_MAP2 f x y =
     if IS_SOME x ∧ IS_SOME y then SOME (f (THE x) (THE y)) else NONE
OPTION_JOIN_DEF
|- (OPTION_JOIN NONE = NONE) ∧ ∀x. OPTION_JOIN (SOME x) = x
OPTION_BIND_def
|- (∀f. OPTION_BIND NONE f = NONE) ∧ ∀x f. OPTION_BIND (SOME x) f = f x
OPTION_IGNORE_BIND_def
|- ∀m1 m2. OPTION_IGNORE_BIND m1 m2 = OPTION_BIND m1 (K m2)
OPTION_GUARD_def
|- (OPTION_GUARD T = SOME ()) ∧ (OPTION_GUARD F = NONE)
OPTION_CHOICE_def
|- (∀m2. OPTION_CHOICE NONE m2 = m2) ∧
   ∀x m2. OPTION_CHOICE (SOME x) m2 = SOME x
OPTION_APPLY_def
|- (∀x. NONE <*> x = NONE) ∧ ∀f x. SOME f <*> x = OPTION_MAP f x
OPTREL_def
|- ∀R x y.
     OPTREL R x y ⇔
     (x = NONE) ∧ (y = NONE) ∨ ∃x0 y0. (x = SOME x0) ∧ (y = SOME y0) ∧ R x0 y0
some_def
|- ∀P. $some P = if ∃x. P x then SOME (@x. P x) else NONE


Theorems

option_Axiom
|- ∀e f. ∃fn. (fn NONE = e) ∧ ∀x. fn (SOME x) = f x
option_induction
|- ∀P. P NONE ∧ (∀a. P (SOME a)) ⇒ ∀x. P x
option_nchotomy
|- ∀opt. (opt = NONE) ∨ ∃x. opt = SOME x
FORALL_OPTION
|- (∀opt. P opt) ⇔ P NONE ∧ ∀x. P (SOME x)
EXISTS_OPTION
|- (∃opt. P opt) ⇔ P NONE ∨ ∃x. P (SOME x)
SOME_11
|- ∀x y. (SOME x = SOME y) ⇔ (x = y)
NOT_NONE_SOME
|- ∀x. NONE ≠ SOME x
NOT_SOME_NONE
|- ∀x. SOME x ≠ NONE
OPTION_MAP2_THM
|- (OPTION_MAP2 f (SOME x) (SOME y) = SOME (f x y)) ∧
   (OPTION_MAP2 f (SOME x) NONE = NONE) ∧
   (OPTION_MAP2 f NONE (SOME y) = NONE) ∧ (OPTION_MAP2 f NONE NONE = NONE)
IS_NONE_EQ_NONE
|- ∀x. IS_NONE x ⇔ (x = NONE)
NOT_IS_SOME_EQ_NONE
|- ∀x. ¬IS_SOME x ⇔ (x = NONE)
option_case_ID
|- ∀x. option_CASE x NONE SOME = x
option_case_SOME_ID
|- ∀x. option_CASE x x SOME = x
option_CLAUSES
|- (∀x y. (SOME x = SOME y) ⇔ (x = y)) ∧ (∀x. THE (SOME x) = x) ∧
   (∀x. NONE ≠ SOME x) ∧ (∀x. SOME x ≠ NONE) ∧ (∀x. IS_SOME (SOME x) ⇔ T) ∧
   (IS_SOME NONE ⇔ F) ∧ (∀x. IS_NONE x ⇔ (x = NONE)) ∧
   (∀x. ¬IS_SOME x ⇔ (x = NONE)) ∧ (∀x. IS_SOME x ⇒ (SOME (THE x) = x)) ∧
   (∀x. option_CASE x NONE SOME = x) ∧ (∀x. option_CASE x x SOME = x) ∧
   (∀x. IS_NONE x ⇒ (option_CASE x e f = e)) ∧
   (∀x. IS_SOME x ⇒ (option_CASE x e f = f (THE x))) ∧
   (∀x. IS_SOME x ⇒ (option_CASE x e SOME = x)) ∧
   (∀v f. option_CASE NONE v f = v) ∧
   (∀x v f. option_CASE (SOME x) v f = f x) ∧
   (∀f x. OPTION_MAP f (SOME x) = SOME (f x)) ∧
   (∀f. OPTION_MAP f NONE = NONE) ∧ (OPTION_JOIN NONE = NONE) ∧
   ∀x. OPTION_JOIN (SOME x) = x
option_case_compute
|- option_CASE x e f = if IS_SOME x then f (THE x) else e
IF_EQUALS_OPTION
|- (((if P then SOME x else NONE) = NONE) ⇔ ¬P) ∧
   (((if P then NONE else SOME x) = NONE) ⇔ P) ∧
   (((if P then SOME x else NONE) = SOME y) ⇔ P ∧ (x = y)) ∧
   (((if P then NONE else SOME x) = SOME y) ⇔ ¬P ∧ (x = y))
IF_NONE_EQUALS_OPTION
|- (((if P then X else NONE) = NONE) ⇔ P ⇒ IS_NONE X) ∧
   (((if P then NONE else X) = NONE) ⇔ IS_SOME X ⇒ P) ∧
   (((if P then X else NONE) = SOME x) ⇔ P ∧ (X = SOME x)) ∧
   (((if P then NONE else X) = SOME x) ⇔ ¬P ∧ (X = SOME x))
OPTION_MAP_EQ_SOME
|- ∀f x y. (OPTION_MAP f x = SOME y) ⇔ ∃z. (x = SOME z) ∧ (y = f z)
OPTION_MAP_EQ_NONE
|- ∀f x. (OPTION_MAP f x = NONE) ⇔ (x = NONE)
OPTION_MAP_EQ_NONE_both_ways
|- ((OPTION_MAP f x = NONE) ⇔ (x = NONE)) ∧
   ((NONE = OPTION_MAP f x) ⇔ (x = NONE))
OPTION_MAP_COMPOSE
|- OPTION_MAP f (OPTION_MAP g x) = OPTION_MAP (f o g) x
OPTION_MAP_CONG
|- ∀opt1 opt2 f1 f2.
     (opt1 = opt2) ∧ (∀x. (opt2 = SOME x) ⇒ (f1 x = f2 x)) ⇒
     (OPTION_MAP f1 opt1 = OPTION_MAP f2 opt2)
OPTION_JOIN_EQ_SOME
|- ∀x y. (OPTION_JOIN x = SOME y) ⇔ (x = SOME (SOME y))
OPTION_MAP2_SOME
|- (OPTION_MAP2 f o1 o2 = SOME v) ⇔
   ∃x1 x2. (o1 = SOME x1) ∧ (o2 = SOME x2) ∧ (v = f x1 x2)
OPTION_MAP2_NONE
|- (OPTION_MAP2 f o1 o2 = NONE) ⇔ (o1 = NONE) ∨ (o2 = NONE)
OPTION_MAP2_cong
|- ∀x1 x2 y1 y2 f1 f2.
     (x1 = x2) ∧ (y1 = y2) ∧
     (∀x y. (x2 = SOME x) ∧ (y2 = SOME y) ⇒ (f1 x y = f2 x y)) ⇒
     (OPTION_MAP2 f1 x1 y1 = OPTION_MAP2 f2 x2 y2)
OPTION_BIND_cong
|- ∀o1 o2 f1 f2.
     (o1 = o2) ∧ (∀x. (o2 = SOME x) ⇒ (f1 x = f2 x)) ⇒
     (OPTION_BIND o1 f1 = OPTION_BIND o2 f2)
OPTION_BIND_EQUALS_OPTION
|- ((OPTION_BIND p f = NONE) ⇔ (p = NONE) ∨ ∃x. (p = SOME x) ∧ (f x = NONE)) ∧
   ((OPTION_BIND p f = SOME y) ⇔ ∃x. (p = SOME x) ∧ (f x = SOME y))
OPTION_IGNORE_BIND_thm
|- (OPTION_IGNORE_BIND NONE m = NONE) ∧ (OPTION_IGNORE_BIND (SOME v) m = m)
OPTION_GUARD_COND
|- OPTION_GUARD b = if b then SOME () else NONE
OPTION_GUARD_EQ_THM
|- ((OPTION_GUARD b = SOME ()) ⇔ b) ∧ ((OPTION_GUARD b = NONE) ⇔ ¬b)
OPTION_CHOICE_EQ_NONE
|- (OPTION_CHOICE m1 m2 = NONE) ⇔ (m1 = NONE) ∧ (m2 = NONE)
OPTION_APPLY_MAP2
|- OPTION_MAP f x <*> y = OPTION_MAP2 f x y
SOME_SOME_APPLY
|- SOME f <*> SOME x = SOME (f x)
SOME_APPLY_PERMUTE
|- f <*> SOME x = SOME (λf. f x) <*> f
OPTION_APPLY_o
|- SOME $o <*> f <*> g <*> x = f <*> (g <*> x)
OPTREL_MONO
|- (∀x y. P x y ⇒ Q x y) ⇒ OPTREL P x y ⇒ OPTREL Q x y
OPTREL_refl
|- (∀x. R x x) ⇒ ∀x. OPTREL R x x
some_intro
|- (∀x. P x ⇒ Q (SOME x)) ∧ ((∀x. ¬P x) ⇒ Q NONE) ⇒ Q ($some P)
some_elim
|- Q ($some P) ⇒ (∃x. P x ∧ Q (SOME x)) ∨ (∀x. ¬P x) ∧ Q NONE
some_F
|- (some x. F) = NONE
some_EQ
|- ((some x. x = y) = SOME y) ∧ ((some x. y = x) = SOME y)
option_case_cong
|- ∀M M' v f.
     (M = M') ∧ ((M' = NONE) ⇒ (v = v')) ∧
     (∀x. (M' = SOME x) ⇒ (f x = f' x)) ⇒
     (option_CASE M v f = option_CASE M' v' f')
datatype_option
|- DATATYPE (option NONE SOME)