Theory "cardinal"

Parents     wellorder   quotient

Signature

Constant Type
+_c :(α -> bool) -> (β -> bool) -> α + β -> bool
HAS_SIZE :(α -> bool) -> num -> bool
bijns :(α -> bool) -> (α -> α option) -> bool
cardeq :(α -> bool) -> (β -> bool) -> bool
cardgeq :(α -> bool) -> (β -> bool) -> bool
cardgt :(α -> bool) -> (β -> bool) -> bool
cardleq :(α -> bool) -> (β -> bool) -> bool
list :(α -> bool) -> α list -> bool
set_exp :(β -> bool) -> (α -> bool) -> (α -> β option) -> bool

Definitions

set_exp_def
⊢ ∀A B.
      A ** B =
      {f | (∀b. b ∈ B ⇒ ∃a. a ∈ A ∧ (f b = SOME a)) ∧ ∀b. b ∉ B ⇒ (f b = NONE)}
list_def
⊢ ∀A. list A = {l | ∀e. MEM e l ⇒ e ∈ A}
HAS_SIZE
⊢ ∀s n. s HAS_SIZE n ⇔ FINITE s ∧ (CARD s = n)
cardleq_def
⊢ ∀s1 s2. s1 ≼ s2 ⇔ ∃f. INJ f s1 s2
cardgt_def
⊢ ∀s t. s ≻ t ⇔ t ≺ s
cardgeq_def
⊢ ∀s t. s ≽ t ⇔ t ≼ s
cardeq_def
⊢ ∀s1 s2. s1 ≈ s2 ⇔ ∃f. BIJ f s1 s2
bijns_def
⊢ ∀A. bijns A = {f | THE ∘ f PERMUTES A ∧ ∀a. a ∈ A ⇔ ∃b. f a = SOME b}
add_c
⊢ ∀s t. s + t = {INL x | x ∈ s} ∪ {INR y | y ∈ t}


Theorems

UNIV_list
⊢ 𝕌(:α list) = list 𝕌(:α)
UNION_LE_ADD_C
⊢ ∀s t. s ∪ t ≼ s + t
UNION_ACI
⊢ ∀p q.
      (p ∪ q = q ∪ p) ∧ (p ∪ q ∪ r = p ∪ q ∪ r) ∧ (p ∪ q ∪ r = q ∪ p ∪ r) ∧
      (p ∪ p = p) ∧ (p ∪ p ∪ q = p ∪ q)
SURJECTIVE_RIGHT_INVERSE
⊢ (∀y. ∃x. f x = y) ⇔ ∃g. ∀y. f (g y) = y
SURJECTIVE_ON_RIGHT_INVERSE
⊢ ∀f t.
      (∀y. y ∈ t ⇒ ∃x. x ∈ s ∧ (f x = y)) ⇔
      ∃g. ∀y. y ∈ t ⇒ g y ∈ s ∧ (f (g y) = y)
SURJECTIVE_ON_IMAGE
⊢ ∀f u v.
      (∀t. t ⊆ v ⇒ ∃s. s ⊆ u ∧ (IMAGE f s = t)) ⇔
      ∀y. y ∈ v ⇒ ∃x. x ∈ u ∧ (f x = y)
SURJECTIVE_IMAGE_THM
⊢ ∀f. (∀y. ∃x. f x = y) ⇔ ∀P. IMAGE f {x | P (f x)} = {x | P x}
SURJECTIVE_IMAGE
⊢ ∀f. (∀t. ∃s. IMAGE f s = t) ⇔ ∀y. ∃x. f x = y
SURJECTIVE_IFF_INJECTIVE_GEN
⊢ ∀s t f.
      FINITE s ∧ FINITE t ∧ (CARD s = CARD t) ∧ IMAGE f s ⊆ t ⇒
      ((∀y. y ∈ t ⇒ ∃x. x ∈ s ∧ (f x = y)) ⇔
       ∀x y. x ∈ s ∧ y ∈ s ∧ (f x = f y) ⇒ (x = y))
SURJECTIVE_IFF_INJECTIVE
⊢ ∀s f.
      FINITE s ∧ IMAGE f s ⊆ s ⇒
      ((∀y. y ∈ s ⇒ ∃x. x ∈ s ∧ (f x = y)) ⇔
       ∀x y. x ∈ s ∧ y ∈ s ∧ (f x = f y) ⇒ (x = y))
SUBSET_CARDLEQ
⊢ ∀x y. x ⊆ y ⇒ x ≼ y
SING_SUBSET
⊢ ∀s x. {x} ⊆ s ⇔ x ∈ s
SING_set_exp_CARD
⊢ {x} ** B ≈ count 1 ∧ A ** {x} ≈ A
SING_set_exp
⊢ ({x} ** B = {(λb. if b ∈ B then SOME x else NONE)}) ∧
  (A ** {x} = {(λb. if b = x then SOME a else NONE) | a ∈ A})
SET_SUM_CARDEQ_SET
⊢ INFINITE s ⇒ s ≈ {T; F} × s ∧ ∀A B. DISJOINT A B ∧ A ≈ s ∧ B ≈ s ⇒ A ∪ B ≈ s
SET_SQUARED_CARDEQ_SET
⊢ ∀s. INFINITE s ⇒ s × s ≈ s
set_exp_product
⊢ (A ** B1) ** B2 ≈ A ** (B1 × B2)
set_exp_count
⊢ A ** count n ≈ {l | (LENGTH l = n) ∧ ∀e. MEM e l ⇒ e ∈ A}
set_exp_cardle_cong
⊢ ((b = ∅) ⇒ (d = ∅)) ⇒ a ≼ b ∧ c ≼ d ⇒ a ** c ≼ b ** d
set_exp_card_cong
⊢ a1 ≈ a2 ⇒ b1 ≈ b2 ⇒ a1 ** b1 ≈ a2 ** b2
set_binomial2
⊢ (A ∪ B) × (A ∪ B) = A × A ∪ A × B ∪ B × A ∪ B × B
RIGHT_IMP_FORALL_THM
⊢ ∀P Q. P ⇒ (∀x. Q x) ⇔ ∀x. P ⇒ Q x
RIGHT_IMP_EXISTS_THM
⊢ ∀P Q. P ⇒ (∃x. Q x) ⇔ ∃x. P ⇒ Q x
POW_TWO_set_exp
⊢ POW A ≈ count 2 ** A
POW_EQ_X_EXP_X
⊢ INFINITE A ⇒ POW A ≈ A ** A
OR_EXISTS_THM
⊢ ∀P Q. (∃x. P x) ∨ (∃x. Q x) ⇔ ∃x. P x ∨ Q x
num_INFINITE
⊢ INFINITE 𝕌(:num)
num_FINITE_AVOID
⊢ ∀s. FINITE s ⇒ ∃a. a ∉ s
num_FINITE
⊢ ∀s. FINITE s ⇔ ∃a. ∀x. x ∈ s ⇒ x ≤ a
NUM_COUNTABLE
⊢ COUNTABLE 𝕌(:num)
mul_c
⊢ ∀s t. s × t = {(x,y) | x ∈ s ∧ y ∈ t}
LT_SUC_LE
⊢ ∀m n. m < SUC n ⇔ m ≤ n
LT_NZ
⊢ ∀n. 0 < n ⇔ n ≠ 0
LT_LE
⊢ ∀m n. m < n ⇔ m ≤ n ∧ m ≠ n
LT_CASES
⊢ ∀m n. m < n ∨ n < m ∨ (m = n)
lt_c
⊢ ∀s t. s ≺ t ⇔ s ≼ t ∧ s ≺ t
LT
⊢ (∀m. m < 0 ⇔ F) ∧ ∀m n. m < SUC n ⇔ (m = n) ∨ m < n
list_SING
⊢ list {e} ≈ 𝕌(:num)
list_EMPTY
⊢ list ∅ = {[]}
list_BIGUNION_EXP
⊢ list A ≈ BIGUNION (IMAGE (λn. A ** count n) 𝕌(:num))
LEFT_IMP_FORALL_THM
⊢ ∀P Q. (∀x. P x) ⇒ Q ⇔ ∃x. P x ⇒ Q
LEFT_IMP_EXISTS_THM
⊢ ∀P Q. (∃x. P x) ⇒ Q ⇔ ∀x. P x ⇒ Q
LE_SUC_LT
⊢ ∀m n. SUC m ≤ n ⇔ m < n
LE_CASES
⊢ ∀m n. m ≤ n ∨ n ≤ m
LE_C
⊢ ∀s t. s ≼ t ⇔ ∃g. ∀x. x ∈ s ⇒ ∃y. y ∈ t ∧ (g y = x)
le_c
⊢ ∀s t.
      s ≼ t ⇔
      ∃f. (∀x. x ∈ s ⇒ f x ∈ t) ∧ ∀x y. x ∈ s ∧ y ∈ s ∧ (f x = f y) ⇒ (x = y)
LE_1
⊢ (∀n. n ≠ 0 ⇒ 0 < n) ∧ (∀n. n ≠ 0 ⇒ 1 ≤ n) ∧ (∀n. 0 < n ⇒ n ≠ 0) ∧
  (∀n. 0 < n ⇒ 1 ≤ n) ∧ (∀n. 1 ≤ n ⇒ 0 < n) ∧ ∀n. 1 ≤ n ⇒ n ≠ 0
INTER_ACI
⊢ ∀p q.
      (p ∩ q = q ∩ p) ∧ (p ∩ q ∩ r = p ∩ q ∩ r) ∧ (p ∩ q ∩ r = q ∩ p ∩ r) ∧
      (p ∩ p = p) ∧ (p ∩ p ∩ q = p ∩ q)
INJECTIVE_ON_LEFT_INVERSE
⊢ ∀f s.
      (∀x y. x ∈ s ∧ y ∈ s ∧ (f x = f y) ⇒ (x = y)) ⇔
      ∃g. ∀x. x ∈ s ⇒ (g (f x) = x)
INJECTIVE_ON_IMAGE
⊢ ∀f u.
      (∀s t. s ⊆ u ∧ t ⊆ u ∧ (IMAGE f s = IMAGE f t) ⇒ (s = t)) ⇔
      ∀x y. x ∈ u ∧ y ∈ u ∧ (f x = f y) ⇒ (x = y)
INJECTIVE_LEFT_INVERSE
⊢ (∀x y. (f x = f y) ⇒ (x = y)) ⇔ ∃g. ∀x. g (f x) = x
INJECTIVE_IMAGE
⊢ ∀f. (∀s t. (IMAGE f s = IMAGE f t) ⇒ (s = t)) ⇔ ∀x y. (f x = f y) ⇒ (x = y)
INFINITE_Unum
⊢ INFINITE A ⇔ 𝕌(:num) ≼ A
INFINITE_UNIV_INF
⊢ INFINITE 𝕌(:num + α)
INFINITE_NONEMPTY
⊢ ∀s. INFINITE s ⇒ s ≠ ∅
INFINITE_IMAGE_INJ
⊢ ∀f. (∀x y. (f x = f y) ⇒ (x = y)) ⇒ ∀s. INFINITE s ⇒ INFINITE (IMAGE f s)
INFINITE_DIFF_FINITE
⊢ ∀s t. INFINITE s ∧ FINITE t ⇒ INFINITE (s DIFF t)
INFINITE_cardleq_INSERT
⊢ INFINITE A ⇒ (x INSERT s ≼ A ⇔ s ≼ A)
INFINITE_CARD_LE
⊢ ∀s. INFINITE s ⇔ 𝕌(:num) ≼ s
INFINITE_A_list_BIJ_A
⊢ INFINITE A ⇒ list A ≈ A
IN_ELIM_PAIR_THM
⊢ ∀P a b. (a,b) ∈ {(x,y) | P x y} ⇔ P a b
IN_CARD_MUL
⊢ ∀s t x y. (x,y) ∈ s × t ⇔ x ∈ s ∧ y ∈ t
IN_CARD_ADD
⊢ (∀x. INL x ∈ s + t ⇔ x ∈ s) ∧ ∀y. INR y ∈ s + t ⇔ y ∈ t
IMP_CONJ_ALT
⊢ ∀p q. p ∧ q ⇒ r ⇔ q ⇒ p ⇒ r
IMAGE_cardleq_rwt
⊢ ∀s t. s ≼ t ⇒ IMAGE f s ≼ t
IMAGE_cardleq
⊢ ∀f s. IMAGE f s ≼ s
HAS_SIZE_SUC
⊢ ∀s n. s HAS_SIZE SUC n ⇔ s ≠ ∅ ∧ ∀a. a ∈ s ⇒ s DELETE a HAS_SIZE n
HAS_SIZE_NUMSEG_LT
⊢ ∀n. {m | m < n} HAS_SIZE n
HAS_SIZE_NUMSEG_LE
⊢ ∀n. {m | m ≤ n} HAS_SIZE n + 1
HAS_SIZE_INDEX
⊢ ∀s n.
      s HAS_SIZE n ⇒
      ∃f. (∀m. m < n ⇒ f m ∈ s) ∧ ∀x. x ∈ s ⇒ ∃!m. m < n ∧ (f m = x)
HAS_SIZE_CLAUSES
⊢ ∀s.
      (s HAS_SIZE 0 ⇔ (s = ∅)) ∧
      (s HAS_SIZE SUC n ⇔ ∃a t. t HAS_SIZE n ∧ a ∉ t ∧ (s = a INSERT t))
HAS_SIZE_CART_UNIV
⊢ ∀m. 𝕌(:α) HAS_SIZE m ⇒ 𝕌(:α) HAS_SIZE m ** 1
HAS_SIZE_CARD
⊢ ∀s n. s HAS_SIZE n ⇒ (CARD s = n)
HAS_SIZE_BOOL
⊢ 𝕌(:bool) HAS_SIZE 2
HAS_SIZE_0
⊢ ∀s. s HAS_SIZE 0 ⇔ (s = ∅)
gt_c
⊢ ∀s t. s ≻ t ⇔ t ≺ s
GE_C
⊢ ∀s t. s ≽ t ⇔ ∃f. ∀y. y ∈ t ⇒ ∃x. x ∈ s ∧ (y = f x)
ge_c
⊢ ∀s t. s ≽ t ⇔ t ≼ s
GE
⊢ ∀n m. m ≥ n ⇔ n ≤ m
FORALL_COUNTABLE_AS_IMAGE
⊢ (∀d. COUNTABLE d ⇒ P d) ⇔ P ∅ ∧ ∀f. P (IMAGE f 𝕌(:num))
finite_subsets_bijection
⊢ INFINITE A ⇒ A ≈ {s | FINITE s ∧ s ⊆ A}
FINITE_PRODUCT_DEPENDENT
⊢ ∀f s t.
      FINITE s ∧ (∀x. x ∈ s ⇒ FINITE (t x)) ⇒ FINITE {f x y | x ∈ s ∧ y ∈ t x}
FINITE_PRODUCT
⊢ ∀s t. FINITE s ∧ FINITE t ⇒ FINITE {(x,y) | x ∈ s ∧ y ∈ t}
FINITE_NUMSEG_LT
⊢ ∀n. FINITE {m | m < n}
FINITE_NUMSEG_LE
⊢ ∀n. FINITE {m | m ≤ n}
FINITE_IMP_COUNTABLE
⊢ ∀s. FINITE s ⇒ COUNTABLE s
FINITE_IMAGE_INJ_GENERAL
⊢ ∀f A s.
      (∀x y. x ∈ s ∧ y ∈ s ∧ (f x = f y) ⇒ (x = y)) ∧ FINITE A ⇒
      FINITE {x | x ∈ s ∧ f x ∈ A}
FINITE_IMAGE_INJ_EQ
⊢ ∀f s.
      (∀x y. x ∈ s ∧ y ∈ s ∧ (f x = f y) ⇒ (x = y)) ⇒
      (FINITE (IMAGE f s) ⇔ FINITE s)
FINITE_IMAGE_INJ'
⊢ (∀x y. x ∈ s ∧ y ∈ s ⇒ ((f x = f y) ⇔ (x = y))) ⇒
  (FINITE (IMAGE f s) ⇔ FINITE s)
FINITE_IMAGE_INJ
⊢ ∀f A. (∀x y. (f x = f y) ⇒ (x = y)) ∧ FINITE A ⇒ FINITE {x | f x ∈ A}
FINITE_HAS_SIZE
⊢ ∀s. FINITE s ⇔ s HAS_SIZE CARD s
FINITE_FINITE_BIGUNIONS
⊢ ∀s. FINITE s ⇒ (FINITE (BIGUNION s) ⇔ ∀t. t ∈ s ⇒ FINITE t)
FINITE_FINITE_BIGUNION
⊢ ∀s. FINITE s ⇒ (FINITE (BIGUNION s) ⇔ ∀t. t ∈ s ⇒ FINITE t)
FINITE_CLE_INFINITE
⊢ FINITE s ∧ INFINITE t ⇒ s ≼ t
FINITE_CART_UNIV
⊢ FINITE 𝕌(:α) ⇒ FINITE 𝕌(:α)
FINITE_CARD_LT
⊢ ∀s. FINITE s ⇔ s ≺ 𝕌(:num)
FINITE_BOOL
⊢ FINITE 𝕌(:bool)
exp_INSERT_cardeq
⊢ e ∉ s ⇒ A ** (e INSERT s) ≈ A × A ** s
exp_count_cardeq
⊢ INFINITE A ∧ 0 < n ⇒ A ** count n ≈ A
EQ_C
⊢ ∀s t.
      s ≈ t ⇔
      ∃R.
          (∀x y. R (x,y) ⇒ x ∈ s ∧ y ∈ t) ∧
          (∀x. x ∈ s ⇒ ∃!y. y ∈ t ∧ R (x,y)) ∧
          ∀y. y ∈ t ⇒ ∃!x. x ∈ s ∧ R (x,y)
eq_c
⊢ ∀s t. s ≈ t ⇔ ∃f. (∀x. x ∈ s ⇒ f x ∈ t) ∧ ∀y. y ∈ t ⇒ ∃!x. x ∈ s ∧ (f x = y)
EMPTY_set_exp_CARD
⊢ A ** ∅ ≈ count 1
EMPTY_set_exp
⊢ (A ** ∅ = {K NONE}) ∧ (B ≠ ∅ ⇒ (∅ ** B = ∅))
EMPTY_CARDLEQ
⊢ ∅ ≼ t
disjoint_countable_decomposition
⊢ ∀s.
      INFINITE s ⇒
      ∃A.
          (BIGUNION A = s) ∧ (∀a. a ∈ A ⇒ INFINITE a ∧ COUNTABLE a) ∧
          ∀a1 a2. a1 ∈ A ∧ a2 ∈ A ∧ a1 ≠ a2 ⇒ DISJOINT a1 a2
COUNTABLE_UNION_IMP
⊢ ∀s t. COUNTABLE s ∧ COUNTABLE t ⇒ COUNTABLE (s ∪ t)
COUNTABLE_UNION
⊢ ∀s t. COUNTABLE (s ∪ t) ⇔ COUNTABLE s ∧ COUNTABLE t
countable_thm
⊢ ∀s. COUNTABLE s ⇔ s ≼ 𝕌(:num)
COUNTABLE_SING
⊢ ∀x. COUNTABLE {x}
COUNTABLE_RESTRICT
⊢ ∀s P. COUNTABLE s ⇒ COUNTABLE {x | x ∈ s ∧ P x}
COUNTABLE_PRODUCT_DEPENDENT
⊢ ∀f s t.
      COUNTABLE s ∧ (∀x. x ∈ s ⇒ COUNTABLE (t x)) ⇒
      COUNTABLE {f x y | x ∈ s ∧ y ∈ t x}
COUNTABLE_INTER
⊢ ∀s t. COUNTABLE s ∨ COUNTABLE t ⇒ COUNTABLE (s ∩ t)
COUNTABLE_INSERT
⊢ ∀x s. COUNTABLE (x INSERT s) ⇔ COUNTABLE s
COUNTABLE_IMAGE_INJ_GENERAL
⊢ ∀f A s.
      (∀x y. x ∈ s ∧ y ∈ s ∧ (f x = f y) ⇒ (x = y)) ∧ COUNTABLE A ⇒
      COUNTABLE {x | x ∈ s ∧ f x ∈ A}
COUNTABLE_IMAGE_INJ_EQ
⊢ ∀f s.
      (∀x y. x ∈ s ∧ y ∈ s ∧ (f x = f y) ⇒ (x = y)) ⇒
      (COUNTABLE (IMAGE f s) ⇔ COUNTABLE s)
COUNTABLE_IMAGE_INJ
⊢ ∀f A. (∀x y. (f x = f y) ⇒ (x = y)) ∧ COUNTABLE A ⇒ COUNTABLE {x | f x ∈ A}
COUNTABLE_IMAGE
⊢ ∀f s. COUNTABLE s ⇒ COUNTABLE (IMAGE f s)
COUNTABLE_EMPTY
⊢ COUNTABLE ∅
COUNTABLE_DIFF_FINITE
⊢ ∀s t. FINITE s ⇒ (COUNTABLE (t DIFF s) ⇔ COUNTABLE t)
COUNTABLE_DELETE
⊢ ∀x s. COUNTABLE (s DELETE x) ⇔ COUNTABLE s
countable_decomposition
⊢ ∀s. INFINITE s ⇒ ∃A. (BIGUNION A = s) ∧ ∀a. a ∈ A ⇒ INFINITE a ∧ COUNTABLE a
COUNTABLE_CROSS
⊢ ∀s t. COUNTABLE s ∧ COUNTABLE t ⇒ COUNTABLE (s × t)
COUNTABLE_CASES
⊢ ∀s. COUNTABLE s ⇔ FINITE s ∨ s ≈ 𝕌(:num)
countable_cardeq
⊢ ∀s t. s ≈ t ⇒ (COUNTABLE s ⇔ COUNTABLE t)
COUNTABLE_BIGUNION
⊢ ∀A. COUNTABLE A ∧ (∀s. s ∈ A ⇒ COUNTABLE s) ⇒ COUNTABLE (BIGUNION A)
COUNTABLE_AS_INJECTIVE_IMAGE
⊢ ∀s.
      COUNTABLE s ∧ INFINITE s ⇒
      ∃f. (s = IMAGE f 𝕌(:num)) ∧ ∀m n. (f m = f n) ⇒ (m = n)
COUNTABLE_AS_IMAGE_SUBSET_EQ
⊢ ∀s. COUNTABLE s ⇔ ∃f. s ⊆ IMAGE f 𝕌(:num)
COUNTABLE_AS_IMAGE_SUBSET
⊢ ∀s. COUNTABLE s ⇒ ∃f. s ⊆ IMAGE f 𝕌(:num)
COUNTABLE_AS_IMAGE
⊢ ∀s. COUNTABLE s ∧ s ≠ ∅ ⇒ ∃f. s = IMAGE f 𝕌(:num)
COUNTABLE_ALT_cardleq
⊢ ∀s. COUNTABLE s ⇔ s ≼ 𝕌(:num)
COUNTABLE
⊢ ∀t. COUNTABLE t ⇔ 𝕌(:num) ≽ t
COUNT_EQ_EMPTY
⊢ (count n = ∅) ⇔ (n = 0)
count_cardle
⊢ count n ≼ A ⇔ FINITE A ⇒ n ≤ CARD A
CONJ_EQ_IMP
⊢ ∀p q. p ∧ q ⇒ r ⇔ p ⇒ q ⇒ r
CONJ_ACI
⊢ ∀p q.
      (p ∧ q ⇔ q ∧ p) ∧ ((p ∧ q) ∧ r ⇔ p ∧ q ∧ r) ∧ (p ∧ q ∧ r ⇔ q ∧ p ∧ r) ∧
      (p ∧ p ⇔ p) ∧ (p ∧ p ∧ q ⇔ p ∧ q)
cardlt_TRANS
⊢ ∀s t u. s ≺ t ∧ t ≺ u ⇒ s ≺ u
cardlt_REFL
⊢ ∀s. ¬(s ≺ s)
cardlt_leq_trans
⊢ ∀r s t. r ≺ s ∧ s ≼ t ⇒ r ≺ t
cardlt_lenoteq
⊢ ∀s t. s ≺ t ⇔ s ≼ t ∧ ¬(s ≈ t)
cardlt_cardle
⊢ A ≺ B ⇒ A ≼ B
cardleq_TRANS
⊢ ∀s t u. s ≼ t ∧ t ≼ u ⇒ s ≼ u
cardleq_SURJ
⊢ A ≼ B ⇔ (∃f. SURJ f B A) ∨ (A = ∅)
cardleq_REFL
⊢ ∀s. s ≼ s
cardleq_lteq
⊢ ∀s1 s2. s1 ≼ s2 ⇔ s1 ≺ s2 ∨ s1 ≈ s2
cardleq_lt_trans
⊢ ∀r s t. r ≼ s ∧ s ≺ t ⇒ r ≺ t
CARDLEQ_FINITE
⊢ ∀s1 s2. FINITE s2 ∧ s1 ≼ s2 ⇒ FINITE s1
cardleq_empty
⊢ ∀x. x ≼ ∅ ⇔ (x = ∅)
cardleq_dichotomy
⊢ ∀s t. s ≼ t ∨ t ≼ s
CARDLEQ_CROSS_CONG
⊢ ∀x1 x2 y1 y2. x1 ≼ x2 ∧ y1 ≼ y2 ⇒ x1 × y1 ≼ x2 × y2
CARDLEQ_CARD
⊢ FINITE s1 ∧ FINITE s2 ⇒ (s1 ≼ s2 ⇔ CARD s1 ≤ CARD s2)
cardleq_ANTISYM
⊢ ∀s t. s ≼ t ∧ t ≼ s ⇒ s ≈ t
cardeq_TRANS
⊢ ∀s t u. s ≈ t ∧ t ≈ u ⇒ s ≈ u
cardeq_SYM
⊢ ∀s t. s ≈ t ⇔ t ≈ s
CARDEQ_SUBSET_CARDLEQ
⊢ s ≈ t ⇒ s ≼ t
cardeq_REFL
⊢ ∀s. s ≈ s
CARDEQ_INSERT_RWT
⊢ ∀s. INFINITE s ⇒ x INSERT s ≈ s
cardeq_INSERT
⊢ x INSERT s ≈ s ⇔ x ∈ s ∨ INFINITE s
CARDEQ_FINITE
⊢ s1 ≈ s2 ⇒ (FINITE s1 ⇔ FINITE s2)
CARDEQ_CROSS_SYM
⊢ s × t ≈ t × s
CARDEQ_CROSS
⊢ s1 ≈ s2 ∧ t1 ≈ t2 ⇒ s1 × t1 ≈ s2 × t2
CARDEQ_CARDLEQ
⊢ s1 ≈ s2 ∧ t1 ≈ t2 ⇒ (s1 ≼ t1 ⇔ s2 ≼ t2)
CARDEQ_CARD_EQN
⊢ FINITE s1 ∧ FINITE s2 ⇒ (s1 ≈ s2 ⇔ (CARD s1 = CARD s2))
CARDEQ_CARD
⊢ s1 ≈ s2 ∧ FINITE s1 ⇒ (CARD s1 = CARD s2)
cardeq_bijns_cong
⊢ A ≈ B ⇒ bijns A ≈ bijns B
CARDEQ_0
⊢ (x ≈ ∅ ⇔ (x = ∅)) ∧ (∅ ≈ x ⇔ (x = ∅))
CARD_SUBSET_EQ
⊢ ∀a b. FINITE b ∧ a ⊆ b ∧ (CARD a = CARD b) ⇒ (a = b)
CARD_SQUARE_NUM
⊢ 𝕌(:num) × 𝕌(:num) ≈ 𝕌(:num)
CARD_SQUARE_INFINITE
⊢ ∀s. INFINITE s ⇒ s × s ≈ s
CARD_RDISTRIB
⊢ ∀s t u. (s + t) × u ≈ s × u + t × u
CARD_NOT_LT
⊢ ∀s t. ¬(s ≺ t) ⇔ t ≼ s
CARD_NOT_LE
⊢ ∀s t. t ≺ s ⇔ t ≺ s
CARD_MUL_SYM
⊢ ∀s t. s × t ≈ t × s
CARD_MUL_LT_LEMMA
⊢ ∀s t u. s ≼ t ∧ t ≺ u ∧ INFINITE u ⇒ s × t ≺ u
CARD_MUL_LT_INFINITE
⊢ ∀s t u. s ≺ u ∧ t ≺ u ∧ INFINITE u ⇒ s × t ≺ u
CARD_MUL_FINITE
⊢ ∀s t. FINITE s ∧ FINITE t ⇒ FINITE (s × t)
CARD_MUL_CONG
⊢ ∀s s' t t'. s ≈ s' ∧ t ≈ t' ⇒ s × t ≈ s' × t'
CARD_MUL_ASSOC
⊢ ∀s t u. s × (t × u) ≈ s × t × u
CARD_MUL_ABSORB_LE
⊢ ∀s t. INFINITE t ∧ s ≼ t ⇒ s × t ≼ t
CARD_MUL_ABSORB
⊢ ∀s t. INFINITE t ∧ s ≠ ∅ ∧ s ≼ t ⇒ s × t ≈ t
CARD_MUL2_ABSORB_LE
⊢ ∀s t u. INFINITE u ∧ s ≼ u ∧ t ≼ u ⇒ s × t ≼ u
CARD_LTE_TRANS
⊢ ∀s t u. s ≺ t ∧ t ≼ u ⇒ s ≺ u
CARD_LTE_TOTAL
⊢ ∀s t. s ≺ t ∨ t ≼ s
CARD_LT_TRANS
⊢ ∀s t u. s ≺ t ∧ t ≺ u ⇒ s ≺ u
CARD_LT_TOTAL
⊢ ∀s t. s ≈ t ∨ s ≺ t ∨ t ≺ s
CARD_LT_REFL
⊢ ∀s. ¬(s ≺ s)
CARD_LT_LE
⊢ ∀s t. s ≺ t ⇔ s ≼ t ∧ ¬(s ≈ t)
CARD_LT_IMP_LE
⊢ ∀s t. s ≺ t ⇒ s ≼ t
CARD_LT_FINITE_INFINITE
⊢ ∀s t. FINITE s ∧ INFINITE t ⇒ s ≺ t
CARD_LT_CONG
⊢ ∀s s' t t'. s ≈ s' ∧ t ≈ t' ⇒ (s ≺ t ⇔ s' ≺ t')
CARD_LT_CARD
⊢ ∀s t. FINITE s ∧ FINITE t ⇒ (s ≺ t ⇔ CARD s < CARD t)
CARD_LT_ADD
⊢ ∀s s' t t'. s ≺ s' ∧ t ≺ t' ⇒ s + t ≺ s' + t'
CARD_LET_TRANS
⊢ ∀s t u. s ≼ t ∧ t ≺ u ⇒ s ≺ u
CARD_LET_TOTAL
⊢ ∀s t. s ≼ t ∨ t ≺ s
CARD_LE_UNIV
⊢ ∀s. s ≼ 𝕌(:α)
CARD_LE_TRANS
⊢ ∀s t u. s ≼ t ∧ t ≼ u ⇒ s ≼ u
CARD_LE_TOTAL
⊢ ∀s t. s ≼ t ∨ t ≼ s
CARD_LE_SUBSET
⊢ ∀s t. s ⊆ t ⇒ s ≼ t
CARD_LE_SQUARE
⊢ ∀s. s ≼ s × s
CARD_LE_RELATIONAL
⊢ ∀R s.
      (∀x y y'. x ∈ s ∧ R x y ∧ R x y' ⇒ (y = y')) ⇒
      {y | ∃x. x ∈ s ∧ R x y} ≼ s
CARD_LE_REFL
⊢ ∀s. s ≼ s
CARD_LE_MUL
⊢ ∀s s' t t'. s ≼ s' ∧ t ≼ t' ⇒ s × t ≼ s' × t'
CARD_LE_LT
⊢ ∀s t. s ≼ t ⇔ s ≺ t ∨ s ≈ t
CARD_LE_INJ
⊢ ∀s t.
      FINITE s ∧ FINITE t ∧ CARD s ≤ CARD t ⇒
      ∃f. IMAGE f s ⊆ t ∧ ∀x y. x ∈ s ∧ y ∈ s ∧ (f x = f y) ⇒ (x = y)
CARD_LE_INFINITE
⊢ ∀s t. INFINITE s ∧ s ≼ t ⇒ INFINITE t
CARD_LE_IMAGE_GEN
⊢ ∀f s t. t ⊆ IMAGE f s ⇒ t ≼ s
CARD_LE_IMAGE
⊢ ∀f s. IMAGE f s ≼ s
CARD_LE_FINITE
⊢ ∀s t. FINITE t ∧ s ≼ t ⇒ FINITE s
CARD_LE_EQ_SUBSET
⊢ ∀s t. s ≼ t ⇔ ∃u. u ⊆ t ∧ s ≈ u
CARD_LE_EMPTY
⊢ ∀s. s ≼ ∅ ⇔ (s = ∅)
CARD_LE_COUNTABLE
⊢ ∀s t. COUNTABLE t ∧ s ≼ t ⇒ COUNTABLE s
CARD_LE_CONG
⊢ ∀s s' t t'. s ≈ s' ∧ t ≈ t' ⇒ (s ≼ t ⇔ s' ≼ t')
CARD_LE_CARD_IMP
⊢ ∀s t. FINITE t ∧ s ≼ t ⇒ CARD s ≤ CARD t
CARD_LE_CARD
⊢ ∀s t. FINITE s ∧ FINITE t ⇒ (s ≼ t ⇔ CARD s ≤ CARD t)
CARD_LE_ANTISYM
⊢ ∀s t. s ≼ t ∧ t ≼ s ⇔ s ≈ t
CARD_LE_ADDR
⊢ ∀s t. s ≼ s + t
CARD_LE_ADDL
⊢ ∀s t. t ≼ s + t
CARD_LE_ADD
⊢ ∀s s' t t'. s ≼ s' ∧ t ≼ t' ⇒ s + t ≼ s' + t'
CARD_LDISTRIB
⊢ ∀s t u. s × (t + u) ≈ s × t + s × u
CARD_INFINITE_CONG
⊢ ∀s t. s ≈ t ⇒ (INFINITE s ⇔ INFINITE t)
CARD_IMAGE_LE
⊢ ∀f s. FINITE s ⇒ CARD (IMAGE f s) ≤ CARD s
CARD_IMAGE_INJ
⊢ ∀f s.
      (∀x y. x ∈ s ∧ y ∈ s ∧ (f x = f y) ⇒ (x = y)) ∧ FINITE s ⇒
      (CARD (IMAGE f s) = CARD s)
CARD_HAS_SIZE_CONG
⊢ ∀s t n. s HAS_SIZE n ∧ s ≈ t ⇒ t HAS_SIZE n
CARD_FINITE_CONG
⊢ ∀s t. s ≈ t ⇒ (FINITE s ⇔ FINITE t)
CARD_EQ_TRANS
⊢ ∀s t u. s ≈ t ∧ t ≈ u ⇒ s ≈ u
CARD_EQ_SYM
⊢ ∀s t. s ≈ t ⇔ t ≈ s
CARD_EQ_REFL
⊢ ∀s. s ≈ s
CARD_EQ_IMP_LE
⊢ ∀s t. s ≈ t ⇒ s ≼ t
CARD_EQ_IMAGE
⊢ ∀f s. (∀x y. x ∈ s ∧ y ∈ s ∧ (f x = f y) ⇒ (x = y)) ⇒ IMAGE f s ≈ s
CARD_EQ_FINITE
⊢ ∀s t. FINITE t ∧ s ≈ t ⇒ FINITE s
CARD_EQ_EMPTY
⊢ ∀s. s ≈ ∅ ⇔ (s = ∅)
CARD_EQ_COUNTABLE
⊢ ∀s t. COUNTABLE t ∧ s ≈ t ⇒ COUNTABLE s
CARD_EQ_CONG
⊢ ∀s s' t t'. s ≈ s' ∧ t ≈ t' ⇒ (s ≈ t ⇔ s' ≈ t')
CARD_EQ_CARD_IMP
⊢ ∀s t. FINITE t ∧ s ≈ t ⇒ (CARD s = CARD t)
CARD_EQ_CARD
⊢ ∀s t. FINITE s ∧ FINITE t ⇒ (s ≈ t ⇔ (CARD s = CARD t))
CARD_EQ_BIJECTIONS
⊢ ∀s t.
      FINITE s ∧ FINITE t ∧ (CARD s = CARD t) ⇒
      ∃f g.
          (∀x. x ∈ s ⇒ f x ∈ t ∧ (g (f x) = x)) ∧
          ∀y. y ∈ t ⇒ g y ∈ s ∧ (f (g y) = y)
CARD_EQ_BIJECTION
⊢ ∀s t.
      FINITE s ∧ FINITE t ∧ (CARD s = CARD t) ⇒
      ∃f.
          (∀x. x ∈ s ⇒ f x ∈ t) ∧ (∀y. y ∈ t ⇒ ∃x. x ∈ s ∧ (f x = y)) ∧
          ∀x y. x ∈ s ∧ y ∈ s ∧ (f x = f y) ⇒ (x = y)
CARD_DISJOINT_UNION
⊢ ∀s t. (s ∩ t = ∅) ⇒ s ∪ t ≈ s + t
CARD_COUNTABLE_CONG
⊢ ∀s t. s ≈ t ⇒ (COUNTABLE s ⇔ COUNTABLE t)
CARD_CART_UNIV
⊢ FINITE 𝕌(:α) ⇒ (CARD 𝕌(:α) = CARD 𝕌(:α) ** 1)
CARD_CARDEQ_I
⊢ FINITE s1 ∧ FINITE s2 ∧ (CARD s1 = CARD s2) ⇒ s1 ≈ s2
CARD_BOOL
⊢ CARD 𝕌(:bool) = 2
CARD_BIGUNION_LE
⊢ ∀s t m n.
      s HAS_SIZE m ∧ (∀x. x ∈ s ⇒ FINITE (t x) ∧ CARD (t x) ≤ n) ⇒
      CARD (BIGUNION {t x | x ∈ s}) ≤ m * n
CARD_BIGUNION
⊢ INFINITE k ∧ s1 ≼ k ∧ (∀e. e ∈ s1 ⇒ e ≼ k) ⇒ BIGUNION s1 ≼ k
CARD_ADD_SYM
⊢ ∀s t. s + t ≈ t + s
CARD_ADD_LE_MUL_INFINITE
⊢ ∀s. INFINITE s ⇒ s + s ≼ s × s
CARD_ADD_FINITE_EQ
⊢ ∀s t. FINITE (s + t) ⇔ FINITE s ∧ FINITE t
CARD_ADD_FINITE
⊢ ∀s t. FINITE s ∧ FINITE t ⇒ FINITE (s + t)
CARD_ADD_CONG
⊢ ∀s s' t t'. s ≈ s' ∧ t ≈ t' ⇒ s + t ≈ s' + t'
CARD_ADD_C
⊢ ∀s t. FINITE s ∧ FINITE t ⇒ (CARD (s + t) = CARD s + CARD t)
CARD_ADD_ASSOC
⊢ ∀s t u. s + (t + u) ≈ s + t + u
CARD_ADD_ABSORB_LE
⊢ ∀s t. INFINITE t ∧ s ≼ t ⇒ s + t ≼ t
CARD_ADD_ABSORB
⊢ ∀s t. INFINITE t ∧ s ≼ t ⇒ s + t ≈ t
CARD_ADD2_ABSORB_LT
⊢ ∀s t u. INFINITE u ∧ s ≺ u ∧ t ≺ u ⇒ s + t ≺ u
CARD_ADD2_ABSORB_LE
⊢ ∀s t u. INFINITE u ∧ s ≼ u ∧ t ≼ u ⇒ s + t ≼ u
CANTOR_THM_UNIV
⊢ 𝕌(:α) ≺ 𝕌(:α -> bool)
CANTOR_THM
⊢ ∀s. s ≺ {t | t ⊆ s}
CANTOR
⊢ A ≺ POW A
BIJECTIVE_INVERSES
⊢ ∀f s t.
      (∀x. x ∈ s ⇒ f x ∈ t) ∧ (∀y. y ∈ t ⇒ ∃!x. x ∈ s ∧ (f x = y)) ⇔
      (∀x. x ∈ s ⇒ f x ∈ t) ∧
      ∃g.
          (∀y. y ∈ t ⇒ g y ∈ s) ∧ (∀y. y ∈ t ⇒ (f (g y) = y)) ∧
          ∀x. x ∈ s ⇒ (g (f x) = x)
BIJECTIVE_INJECTIVE_SURJECTIVE
⊢ ∀f s t.
      (∀x. x ∈ s ⇒ f x ∈ t) ∧ (∀y. y ∈ t ⇒ ∃!x. x ∈ s ∧ (f x = y)) ⇔
      (∀x. x ∈ s ⇒ f x ∈ t) ∧ (∀x y. x ∈ s ∧ y ∈ s ∧ (f x = f y) ⇒ (x = y)) ∧
      ∀y. y ∈ t ⇒ ∃x. x ∈ s ∧ (f x = y)
bijections_cardeq
⊢ INFINITE s ⇒ bijns s ≈ POW s
BIJ_functions_agree
⊢ ∀f g s t. BIJ f s t ∧ (∀x. x ∈ s ⇒ (f x = g x)) ⇒ BIJ g s t