- UNIV_list
-
⊢ 𝕌(:α list) = list 𝕌(:α)
- UNION_LE_ADD_C
-
⊢ ∀s t. s ∪ t ≼ s + t
- UNION_ACI
-
⊢ ∀p q.
(p ∪ q = q ∪ p) ∧ (p ∪ q ∪ r = p ∪ q ∪ r) ∧ (p ∪ q ∪ r = q ∪ p ∪ r) ∧
(p ∪ p = p) ∧ (p ∪ p ∪ q = p ∪ q)
- SURJECTIVE_RIGHT_INVERSE
-
⊢ (∀y. ∃x. f x = y) ⇔ ∃g. ∀y. f (g y) = y
- SURJECTIVE_ON_RIGHT_INVERSE
-
⊢ ∀f t.
(∀y. y ∈ t ⇒ ∃x. x ∈ s ∧ (f x = y)) ⇔
∃g. ∀y. y ∈ t ⇒ g y ∈ s ∧ (f (g y) = y)
- SURJECTIVE_ON_IMAGE
-
⊢ ∀f u v.
(∀t. t ⊆ v ⇒ ∃s. s ⊆ u ∧ (IMAGE f s = t)) ⇔
∀y. y ∈ v ⇒ ∃x. x ∈ u ∧ (f x = y)
- SURJECTIVE_IMAGE_THM
-
⊢ ∀f. (∀y. ∃x. f x = y) ⇔ ∀P. IMAGE f {x | P (f x)} = {x | P x}
- SURJECTIVE_IMAGE
-
⊢ ∀f. (∀t. ∃s. IMAGE f s = t) ⇔ ∀y. ∃x. f x = y
- SURJECTIVE_IFF_INJECTIVE_GEN
-
⊢ ∀s t f.
FINITE s ∧ FINITE t ∧ (CARD s = CARD t) ∧ IMAGE f s ⊆ t ⇒
((∀y. y ∈ t ⇒ ∃x. x ∈ s ∧ (f x = y)) ⇔
∀x y. x ∈ s ∧ y ∈ s ∧ (f x = f y) ⇒ (x = y))
- SURJECTIVE_IFF_INJECTIVE
-
⊢ ∀s f.
FINITE s ∧ IMAGE f s ⊆ s ⇒
((∀y. y ∈ s ⇒ ∃x. x ∈ s ∧ (f x = y)) ⇔
∀x y. x ∈ s ∧ y ∈ s ∧ (f x = f y) ⇒ (x = y))
- SUBSET_CARDLEQ
-
⊢ ∀x y. x ⊆ y ⇒ x ≼ y
- SING_SUBSET
-
⊢ ∀s x. {x} ⊆ s ⇔ x ∈ s
- SING_set_exp_CARD
-
⊢ {x} ** B ≈ count 1 ∧ A ** {x} ≈ A
- SING_set_exp
-
⊢ ({x} ** B = {(λb. if b ∈ B then SOME x else NONE)}) ∧
(A ** {x} = {(λb. if b = x then SOME a else NONE) | a ∈ A})
- SET_SUM_CARDEQ_SET
-
⊢ INFINITE s ⇒ s ≈ {T; F} × s ∧ ∀A B. DISJOINT A B ∧ A ≈ s ∧ B ≈ s ⇒ A ∪ B ≈ s
- SET_SQUARED_CARDEQ_SET
-
⊢ ∀s. INFINITE s ⇒ s × s ≈ s
- set_exp_product
-
⊢ (A ** B1) ** B2 ≈ A ** (B1 × B2)
- set_exp_count
-
⊢ A ** count n ≈ {l | (LENGTH l = n) ∧ ∀e. MEM e l ⇒ e ∈ A}
- set_exp_cardle_cong
-
⊢ ((b = ∅) ⇒ (d = ∅)) ⇒ a ≼ b ∧ c ≼ d ⇒ a ** c ≼ b ** d
- set_exp_card_cong
-
⊢ a1 ≈ a2 ⇒ b1 ≈ b2 ⇒ a1 ** b1 ≈ a2 ** b2
- set_binomial2
-
⊢ (A ∪ B) × (A ∪ B) = A × A ∪ A × B ∪ B × A ∪ B × B
- RIGHT_IMP_FORALL_THM
-
⊢ ∀P Q. P ⇒ (∀x. Q x) ⇔ ∀x. P ⇒ Q x
- RIGHT_IMP_EXISTS_THM
-
⊢ ∀P Q. P ⇒ (∃x. Q x) ⇔ ∃x. P ⇒ Q x
- POW_TWO_set_exp
-
⊢ POW A ≈ count 2 ** A
- POW_EQ_X_EXP_X
-
⊢ INFINITE A ⇒ POW A ≈ A ** A
- OR_EXISTS_THM
-
⊢ ∀P Q. (∃x. P x) ∨ (∃x. Q x) ⇔ ∃x. P x ∨ Q x
- num_INFINITE
-
⊢ INFINITE 𝕌(:num)
- num_FINITE_AVOID
-
⊢ ∀s. FINITE s ⇒ ∃a. a ∉ s
- num_FINITE
-
⊢ ∀s. FINITE s ⇔ ∃a. ∀x. x ∈ s ⇒ x ≤ a
- NUM_COUNTABLE
-
⊢ COUNTABLE 𝕌(:num)
- mul_c
-
⊢ ∀s t. s × t = {(x,y) | x ∈ s ∧ y ∈ t}
- LT_SUC_LE
-
⊢ ∀m n. m < SUC n ⇔ m ≤ n
- LT_NZ
-
⊢ ∀n. 0 < n ⇔ n ≠ 0
- LT_LE
-
⊢ ∀m n. m < n ⇔ m ≤ n ∧ m ≠ n
- LT_CASES
-
⊢ ∀m n. m < n ∨ n < m ∨ (m = n)
- lt_c
-
⊢ ∀s t. s ≺ t ⇔ s ≼ t ∧ s ≺ t
- LT
-
⊢ (∀m. m < 0 ⇔ F) ∧ ∀m n. m < SUC n ⇔ (m = n) ∨ m < n
- list_SING
-
⊢ list {e} ≈ 𝕌(:num)
- list_EMPTY
-
⊢ list ∅ = {[]}
- list_BIGUNION_EXP
-
⊢ list A ≈ BIGUNION (IMAGE (λn. A ** count n) 𝕌(:num))
- LEFT_IMP_FORALL_THM
-
⊢ ∀P Q. (∀x. P x) ⇒ Q ⇔ ∃x. P x ⇒ Q
- LEFT_IMP_EXISTS_THM
-
⊢ ∀P Q. (∃x. P x) ⇒ Q ⇔ ∀x. P x ⇒ Q
- LE_SUC_LT
-
⊢ ∀m n. SUC m ≤ n ⇔ m < n
- LE_CASES
-
⊢ ∀m n. m ≤ n ∨ n ≤ m
- LE_C
-
⊢ ∀s t. s ≼ t ⇔ ∃g. ∀x. x ∈ s ⇒ ∃y. y ∈ t ∧ (g y = x)
- le_c
-
⊢ ∀s t.
s ≼ t ⇔
∃f. (∀x. x ∈ s ⇒ f x ∈ t) ∧ ∀x y. x ∈ s ∧ y ∈ s ∧ (f x = f y) ⇒ (x = y)
- LE_1
-
⊢ (∀n. n ≠ 0 ⇒ 0 < n) ∧ (∀n. n ≠ 0 ⇒ 1 ≤ n) ∧ (∀n. 0 < n ⇒ n ≠ 0) ∧
(∀n. 0 < n ⇒ 1 ≤ n) ∧ (∀n. 1 ≤ n ⇒ 0 < n) ∧ ∀n. 1 ≤ n ⇒ n ≠ 0
- INTER_ACI
-
⊢ ∀p q.
(p ∩ q = q ∩ p) ∧ (p ∩ q ∩ r = p ∩ q ∩ r) ∧ (p ∩ q ∩ r = q ∩ p ∩ r) ∧
(p ∩ p = p) ∧ (p ∩ p ∩ q = p ∩ q)
- INJECTIVE_ON_LEFT_INVERSE
-
⊢ ∀f s.
(∀x y. x ∈ s ∧ y ∈ s ∧ (f x = f y) ⇒ (x = y)) ⇔
∃g. ∀x. x ∈ s ⇒ (g (f x) = x)
- INJECTIVE_ON_IMAGE
-
⊢ ∀f u.
(∀s t. s ⊆ u ∧ t ⊆ u ∧ (IMAGE f s = IMAGE f t) ⇒ (s = t)) ⇔
∀x y. x ∈ u ∧ y ∈ u ∧ (f x = f y) ⇒ (x = y)
- INJECTIVE_LEFT_INVERSE
-
⊢ (∀x y. (f x = f y) ⇒ (x = y)) ⇔ ∃g. ∀x. g (f x) = x
- INJECTIVE_IMAGE
-
⊢ ∀f. (∀s t. (IMAGE f s = IMAGE f t) ⇒ (s = t)) ⇔ ∀x y. (f x = f y) ⇒ (x = y)
- INFINITE_Unum
-
⊢ INFINITE A ⇔ 𝕌(:num) ≼ A
- INFINITE_UNIV_INF
-
⊢ INFINITE 𝕌(:num + α)
- INFINITE_NONEMPTY
-
⊢ ∀s. INFINITE s ⇒ s ≠ ∅
- INFINITE_IMAGE_INJ
-
⊢ ∀f. (∀x y. (f x = f y) ⇒ (x = y)) ⇒ ∀s. INFINITE s ⇒ INFINITE (IMAGE f s)
- INFINITE_DIFF_FINITE
-
⊢ ∀s t. INFINITE s ∧ FINITE t ⇒ INFINITE (s DIFF t)
- INFINITE_cardleq_INSERT
-
⊢ INFINITE A ⇒ (x INSERT s ≼ A ⇔ s ≼ A)
- INFINITE_CARD_LE
-
⊢ ∀s. INFINITE s ⇔ 𝕌(:num) ≼ s
- INFINITE_A_list_BIJ_A
-
⊢ INFINITE A ⇒ list A ≈ A
- IN_ELIM_PAIR_THM
-
⊢ ∀P a b. (a,b) ∈ {(x,y) | P x y} ⇔ P a b
- IN_CARD_MUL
-
⊢ ∀s t x y. (x,y) ∈ s × t ⇔ x ∈ s ∧ y ∈ t
- IN_CARD_ADD
-
⊢ (∀x. INL x ∈ s + t ⇔ x ∈ s) ∧ ∀y. INR y ∈ s + t ⇔ y ∈ t
- IMP_CONJ_ALT
-
⊢ ∀p q. p ∧ q ⇒ r ⇔ q ⇒ p ⇒ r
- IMAGE_cardleq_rwt
-
⊢ ∀s t. s ≼ t ⇒ IMAGE f s ≼ t
- IMAGE_cardleq
-
⊢ ∀f s. IMAGE f s ≼ s
- HAS_SIZE_SUC
-
⊢ ∀s n. s HAS_SIZE SUC n ⇔ s ≠ ∅ ∧ ∀a. a ∈ s ⇒ s DELETE a HAS_SIZE n
- HAS_SIZE_NUMSEG_LT
-
⊢ ∀n. {m | m < n} HAS_SIZE n
- HAS_SIZE_NUMSEG_LE
-
⊢ ∀n. {m | m ≤ n} HAS_SIZE n + 1
- HAS_SIZE_INDEX
-
⊢ ∀s n.
s HAS_SIZE n ⇒
∃f. (∀m. m < n ⇒ f m ∈ s) ∧ ∀x. x ∈ s ⇒ ∃!m. m < n ∧ (f m = x)
- HAS_SIZE_CLAUSES
-
⊢ ∀s.
(s HAS_SIZE 0 ⇔ (s = ∅)) ∧
(s HAS_SIZE SUC n ⇔ ∃a t. t HAS_SIZE n ∧ a ∉ t ∧ (s = a INSERT t))
- HAS_SIZE_CART_UNIV
-
⊢ ∀m. 𝕌(:α) HAS_SIZE m ⇒ 𝕌(:α) HAS_SIZE m ** 1
- HAS_SIZE_CARD
-
⊢ ∀s n. s HAS_SIZE n ⇒ (CARD s = n)
- HAS_SIZE_BOOL
-
⊢ 𝕌(:bool) HAS_SIZE 2
- HAS_SIZE_0
-
⊢ ∀s. s HAS_SIZE 0 ⇔ (s = ∅)
- gt_c
-
⊢ ∀s t. s ≻ t ⇔ t ≺ s
- GE_C
-
⊢ ∀s t. s ≽ t ⇔ ∃f. ∀y. y ∈ t ⇒ ∃x. x ∈ s ∧ (y = f x)
- ge_c
-
⊢ ∀s t. s ≽ t ⇔ t ≼ s
- GE
-
⊢ ∀n m. m ≥ n ⇔ n ≤ m
- FORALL_COUNTABLE_AS_IMAGE
-
⊢ (∀d. COUNTABLE d ⇒ P d) ⇔ P ∅ ∧ ∀f. P (IMAGE f 𝕌(:num))
- finite_subsets_bijection
-
⊢ INFINITE A ⇒ A ≈ {s | FINITE s ∧ s ⊆ A}
- FINITE_PRODUCT_DEPENDENT
-
⊢ ∀f s t.
FINITE s ∧ (∀x. x ∈ s ⇒ FINITE (t x)) ⇒ FINITE {f x y | x ∈ s ∧ y ∈ t x}
- FINITE_PRODUCT
-
⊢ ∀s t. FINITE s ∧ FINITE t ⇒ FINITE {(x,y) | x ∈ s ∧ y ∈ t}
- FINITE_NUMSEG_LT
-
⊢ ∀n. FINITE {m | m < n}
- FINITE_NUMSEG_LE
-
⊢ ∀n. FINITE {m | m ≤ n}
- FINITE_IMP_COUNTABLE
-
⊢ ∀s. FINITE s ⇒ COUNTABLE s
- FINITE_IMAGE_INJ_GENERAL
-
⊢ ∀f A s.
(∀x y. x ∈ s ∧ y ∈ s ∧ (f x = f y) ⇒ (x = y)) ∧ FINITE A ⇒
FINITE {x | x ∈ s ∧ f x ∈ A}
- FINITE_IMAGE_INJ_EQ
-
⊢ ∀f s.
(∀x y. x ∈ s ∧ y ∈ s ∧ (f x = f y) ⇒ (x = y)) ⇒
(FINITE (IMAGE f s) ⇔ FINITE s)
- FINITE_IMAGE_INJ'
-
⊢ (∀x y. x ∈ s ∧ y ∈ s ⇒ ((f x = f y) ⇔ (x = y))) ⇒
(FINITE (IMAGE f s) ⇔ FINITE s)
- FINITE_IMAGE_INJ
-
⊢ ∀f A. (∀x y. (f x = f y) ⇒ (x = y)) ∧ FINITE A ⇒ FINITE {x | f x ∈ A}
- FINITE_HAS_SIZE
-
⊢ ∀s. FINITE s ⇔ s HAS_SIZE CARD s
- FINITE_FINITE_BIGUNIONS
-
⊢ ∀s. FINITE s ⇒ (FINITE (BIGUNION s) ⇔ ∀t. t ∈ s ⇒ FINITE t)
- FINITE_FINITE_BIGUNION
-
⊢ ∀s. FINITE s ⇒ (FINITE (BIGUNION s) ⇔ ∀t. t ∈ s ⇒ FINITE t)
- FINITE_CLE_INFINITE
-
⊢ FINITE s ∧ INFINITE t ⇒ s ≼ t
- FINITE_CART_UNIV
-
⊢ FINITE 𝕌(:α) ⇒ FINITE 𝕌(:α)
- FINITE_CARD_LT
-
⊢ ∀s. FINITE s ⇔ s ≺ 𝕌(:num)
- FINITE_BOOL
-
⊢ FINITE 𝕌(:bool)
- exp_INSERT_cardeq
-
⊢ e ∉ s ⇒ A ** (e INSERT s) ≈ A × A ** s
- exp_count_cardeq
-
⊢ INFINITE A ∧ 0 < n ⇒ A ** count n ≈ A
- EQ_C
-
⊢ ∀s t.
s ≈ t ⇔
∃R.
(∀x y. R (x,y) ⇒ x ∈ s ∧ y ∈ t) ∧
(∀x. x ∈ s ⇒ ∃!y. y ∈ t ∧ R (x,y)) ∧
∀y. y ∈ t ⇒ ∃!x. x ∈ s ∧ R (x,y)
- eq_c
-
⊢ ∀s t. s ≈ t ⇔ ∃f. (∀x. x ∈ s ⇒ f x ∈ t) ∧ ∀y. y ∈ t ⇒ ∃!x. x ∈ s ∧ (f x = y)
- EMPTY_set_exp_CARD
-
⊢ A ** ∅ ≈ count 1
- EMPTY_set_exp
-
⊢ (A ** ∅ = {K NONE}) ∧ (B ≠ ∅ ⇒ (∅ ** B = ∅))
- EMPTY_CARDLEQ
-
⊢ ∅ ≼ t
- disjoint_countable_decomposition
-
⊢ ∀s.
INFINITE s ⇒
∃A.
(BIGUNION A = s) ∧ (∀a. a ∈ A ⇒ INFINITE a ∧ COUNTABLE a) ∧
∀a1 a2. a1 ∈ A ∧ a2 ∈ A ∧ a1 ≠ a2 ⇒ DISJOINT a1 a2
- COUNTABLE_UNION_IMP
-
⊢ ∀s t. COUNTABLE s ∧ COUNTABLE t ⇒ COUNTABLE (s ∪ t)
- COUNTABLE_UNION
-
⊢ ∀s t. COUNTABLE (s ∪ t) ⇔ COUNTABLE s ∧ COUNTABLE t
- countable_thm
-
⊢ ∀s. COUNTABLE s ⇔ s ≼ 𝕌(:num)
- COUNTABLE_SING
-
⊢ ∀x. COUNTABLE {x}
- COUNTABLE_RESTRICT
-
⊢ ∀s P. COUNTABLE s ⇒ COUNTABLE {x | x ∈ s ∧ P x}
- COUNTABLE_PRODUCT_DEPENDENT
-
⊢ ∀f s t.
COUNTABLE s ∧ (∀x. x ∈ s ⇒ COUNTABLE (t x)) ⇒
COUNTABLE {f x y | x ∈ s ∧ y ∈ t x}
- COUNTABLE_INTER
-
⊢ ∀s t. COUNTABLE s ∨ COUNTABLE t ⇒ COUNTABLE (s ∩ t)
- COUNTABLE_INSERT
-
⊢ ∀x s. COUNTABLE (x INSERT s) ⇔ COUNTABLE s
- COUNTABLE_IMAGE_INJ_GENERAL
-
⊢ ∀f A s.
(∀x y. x ∈ s ∧ y ∈ s ∧ (f x = f y) ⇒ (x = y)) ∧ COUNTABLE A ⇒
COUNTABLE {x | x ∈ s ∧ f x ∈ A}
- COUNTABLE_IMAGE_INJ_EQ
-
⊢ ∀f s.
(∀x y. x ∈ s ∧ y ∈ s ∧ (f x = f y) ⇒ (x = y)) ⇒
(COUNTABLE (IMAGE f s) ⇔ COUNTABLE s)
- COUNTABLE_IMAGE_INJ
-
⊢ ∀f A. (∀x y. (f x = f y) ⇒ (x = y)) ∧ COUNTABLE A ⇒ COUNTABLE {x | f x ∈ A}
- COUNTABLE_IMAGE
-
⊢ ∀f s. COUNTABLE s ⇒ COUNTABLE (IMAGE f s)
- COUNTABLE_EMPTY
-
⊢ COUNTABLE ∅
- COUNTABLE_DIFF_FINITE
-
⊢ ∀s t. FINITE s ⇒ (COUNTABLE (t DIFF s) ⇔ COUNTABLE t)
- COUNTABLE_DELETE
-
⊢ ∀x s. COUNTABLE (s DELETE x) ⇔ COUNTABLE s
- countable_decomposition
-
⊢ ∀s. INFINITE s ⇒ ∃A. (BIGUNION A = s) ∧ ∀a. a ∈ A ⇒ INFINITE a ∧ COUNTABLE a
- COUNTABLE_CROSS
-
⊢ ∀s t. COUNTABLE s ∧ COUNTABLE t ⇒ COUNTABLE (s × t)
- COUNTABLE_CASES
-
⊢ ∀s. COUNTABLE s ⇔ FINITE s ∨ s ≈ 𝕌(:num)
- countable_cardeq
-
⊢ ∀s t. s ≈ t ⇒ (COUNTABLE s ⇔ COUNTABLE t)
- COUNTABLE_BIGUNION
-
⊢ ∀A. COUNTABLE A ∧ (∀s. s ∈ A ⇒ COUNTABLE s) ⇒ COUNTABLE (BIGUNION A)
- COUNTABLE_AS_INJECTIVE_IMAGE
-
⊢ ∀s.
COUNTABLE s ∧ INFINITE s ⇒
∃f. (s = IMAGE f 𝕌(:num)) ∧ ∀m n. (f m = f n) ⇒ (m = n)
- COUNTABLE_AS_IMAGE_SUBSET_EQ
-
⊢ ∀s. COUNTABLE s ⇔ ∃f. s ⊆ IMAGE f 𝕌(:num)
- COUNTABLE_AS_IMAGE_SUBSET
-
⊢ ∀s. COUNTABLE s ⇒ ∃f. s ⊆ IMAGE f 𝕌(:num)
- COUNTABLE_AS_IMAGE
-
⊢ ∀s. COUNTABLE s ∧ s ≠ ∅ ⇒ ∃f. s = IMAGE f 𝕌(:num)
- COUNTABLE_ALT_cardleq
-
⊢ ∀s. COUNTABLE s ⇔ s ≼ 𝕌(:num)
- COUNTABLE
-
⊢ ∀t. COUNTABLE t ⇔ 𝕌(:num) ≽ t
- COUNT_EQ_EMPTY
-
⊢ (count n = ∅) ⇔ (n = 0)
- count_cardle
-
⊢ count n ≼ A ⇔ FINITE A ⇒ n ≤ CARD A
- CONJ_EQ_IMP
-
⊢ ∀p q. p ∧ q ⇒ r ⇔ p ⇒ q ⇒ r
- CONJ_ACI
-
⊢ ∀p q.
(p ∧ q ⇔ q ∧ p) ∧ ((p ∧ q) ∧ r ⇔ p ∧ q ∧ r) ∧ (p ∧ q ∧ r ⇔ q ∧ p ∧ r) ∧
(p ∧ p ⇔ p) ∧ (p ∧ p ∧ q ⇔ p ∧ q)
- cardlt_TRANS
-
⊢ ∀s t u. s ≺ t ∧ t ≺ u ⇒ s ≺ u
- cardlt_REFL
-
⊢ ∀s. ¬(s ≺ s)
- cardlt_leq_trans
-
⊢ ∀r s t. r ≺ s ∧ s ≼ t ⇒ r ≺ t
- cardlt_lenoteq
-
⊢ ∀s t. s ≺ t ⇔ s ≼ t ∧ ¬(s ≈ t)
- cardlt_cardle
-
⊢ A ≺ B ⇒ A ≼ B
- cardleq_TRANS
-
⊢ ∀s t u. s ≼ t ∧ t ≼ u ⇒ s ≼ u
- cardleq_SURJ
-
⊢ A ≼ B ⇔ (∃f. SURJ f B A) ∨ (A = ∅)
- cardleq_REFL
-
⊢ ∀s. s ≼ s
- cardleq_lteq
-
⊢ ∀s1 s2. s1 ≼ s2 ⇔ s1 ≺ s2 ∨ s1 ≈ s2
- cardleq_lt_trans
-
⊢ ∀r s t. r ≼ s ∧ s ≺ t ⇒ r ≺ t
- CARDLEQ_FINITE
-
⊢ ∀s1 s2. FINITE s2 ∧ s1 ≼ s2 ⇒ FINITE s1
- cardleq_empty
-
⊢ ∀x. x ≼ ∅ ⇔ (x = ∅)
- cardleq_dichotomy
-
⊢ ∀s t. s ≼ t ∨ t ≼ s
- CARDLEQ_CROSS_CONG
-
⊢ ∀x1 x2 y1 y2. x1 ≼ x2 ∧ y1 ≼ y2 ⇒ x1 × y1 ≼ x2 × y2
- CARDLEQ_CARD
-
⊢ FINITE s1 ∧ FINITE s2 ⇒ (s1 ≼ s2 ⇔ CARD s1 ≤ CARD s2)
- cardleq_ANTISYM
-
⊢ ∀s t. s ≼ t ∧ t ≼ s ⇒ s ≈ t
- cardeq_TRANS
-
⊢ ∀s t u. s ≈ t ∧ t ≈ u ⇒ s ≈ u
- cardeq_SYM
-
⊢ ∀s t. s ≈ t ⇔ t ≈ s
- CARDEQ_SUBSET_CARDLEQ
-
⊢ s ≈ t ⇒ s ≼ t
- cardeq_REFL
-
⊢ ∀s. s ≈ s
- CARDEQ_INSERT_RWT
-
⊢ ∀s. INFINITE s ⇒ x INSERT s ≈ s
- cardeq_INSERT
-
⊢ x INSERT s ≈ s ⇔ x ∈ s ∨ INFINITE s
- CARDEQ_FINITE
-
⊢ s1 ≈ s2 ⇒ (FINITE s1 ⇔ FINITE s2)
- CARDEQ_CROSS_SYM
-
⊢ s × t ≈ t × s
- CARDEQ_CROSS
-
⊢ s1 ≈ s2 ∧ t1 ≈ t2 ⇒ s1 × t1 ≈ s2 × t2
- CARDEQ_CARDLEQ
-
⊢ s1 ≈ s2 ∧ t1 ≈ t2 ⇒ (s1 ≼ t1 ⇔ s2 ≼ t2)
- CARDEQ_CARD_EQN
-
⊢ FINITE s1 ∧ FINITE s2 ⇒ (s1 ≈ s2 ⇔ (CARD s1 = CARD s2))
- CARDEQ_CARD
-
⊢ s1 ≈ s2 ∧ FINITE s1 ⇒ (CARD s1 = CARD s2)
- cardeq_bijns_cong
-
⊢ A ≈ B ⇒ bijns A ≈ bijns B
- CARDEQ_0
-
⊢ (x ≈ ∅ ⇔ (x = ∅)) ∧ (∅ ≈ x ⇔ (x = ∅))
- CARD_SUBSET_EQ
-
⊢ ∀a b. FINITE b ∧ a ⊆ b ∧ (CARD a = CARD b) ⇒ (a = b)
- CARD_SQUARE_NUM
-
⊢ 𝕌(:num) × 𝕌(:num) ≈ 𝕌(:num)
- CARD_SQUARE_INFINITE
-
⊢ ∀s. INFINITE s ⇒ s × s ≈ s
- CARD_RDISTRIB
-
⊢ ∀s t u. (s + t) × u ≈ s × u + t × u
- CARD_NOT_LT
-
⊢ ∀s t. ¬(s ≺ t) ⇔ t ≼ s
- CARD_NOT_LE
-
⊢ ∀s t. t ≺ s ⇔ t ≺ s
- CARD_MUL_SYM
-
⊢ ∀s t. s × t ≈ t × s
- CARD_MUL_LT_LEMMA
-
⊢ ∀s t u. s ≼ t ∧ t ≺ u ∧ INFINITE u ⇒ s × t ≺ u
- CARD_MUL_LT_INFINITE
-
⊢ ∀s t u. s ≺ u ∧ t ≺ u ∧ INFINITE u ⇒ s × t ≺ u
- CARD_MUL_FINITE
-
⊢ ∀s t. FINITE s ∧ FINITE t ⇒ FINITE (s × t)
- CARD_MUL_CONG
-
⊢ ∀s s' t t'. s ≈ s' ∧ t ≈ t' ⇒ s × t ≈ s' × t'
- CARD_MUL_ASSOC
-
⊢ ∀s t u. s × (t × u) ≈ s × t × u
- CARD_MUL_ABSORB_LE
-
⊢ ∀s t. INFINITE t ∧ s ≼ t ⇒ s × t ≼ t
- CARD_MUL_ABSORB
-
⊢ ∀s t. INFINITE t ∧ s ≠ ∅ ∧ s ≼ t ⇒ s × t ≈ t
- CARD_MUL2_ABSORB_LE
-
⊢ ∀s t u. INFINITE u ∧ s ≼ u ∧ t ≼ u ⇒ s × t ≼ u
- CARD_LTE_TRANS
-
⊢ ∀s t u. s ≺ t ∧ t ≼ u ⇒ s ≺ u
- CARD_LTE_TOTAL
-
⊢ ∀s t. s ≺ t ∨ t ≼ s
- CARD_LT_TRANS
-
⊢ ∀s t u. s ≺ t ∧ t ≺ u ⇒ s ≺ u
- CARD_LT_TOTAL
-
⊢ ∀s t. s ≈ t ∨ s ≺ t ∨ t ≺ s
- CARD_LT_REFL
-
⊢ ∀s. ¬(s ≺ s)
- CARD_LT_LE
-
⊢ ∀s t. s ≺ t ⇔ s ≼ t ∧ ¬(s ≈ t)
- CARD_LT_IMP_LE
-
⊢ ∀s t. s ≺ t ⇒ s ≼ t
- CARD_LT_FINITE_INFINITE
-
⊢ ∀s t. FINITE s ∧ INFINITE t ⇒ s ≺ t
- CARD_LT_CONG
-
⊢ ∀s s' t t'. s ≈ s' ∧ t ≈ t' ⇒ (s ≺ t ⇔ s' ≺ t')
- CARD_LT_CARD
-
⊢ ∀s t. FINITE s ∧ FINITE t ⇒ (s ≺ t ⇔ CARD s < CARD t)
- CARD_LT_ADD
-
⊢ ∀s s' t t'. s ≺ s' ∧ t ≺ t' ⇒ s + t ≺ s' + t'
- CARD_LET_TRANS
-
⊢ ∀s t u. s ≼ t ∧ t ≺ u ⇒ s ≺ u
- CARD_LET_TOTAL
-
⊢ ∀s t. s ≼ t ∨ t ≺ s
- CARD_LE_UNIV
-
⊢ ∀s. s ≼ 𝕌(:α)
- CARD_LE_TRANS
-
⊢ ∀s t u. s ≼ t ∧ t ≼ u ⇒ s ≼ u
- CARD_LE_TOTAL
-
⊢ ∀s t. s ≼ t ∨ t ≼ s
- CARD_LE_SUBSET
-
⊢ ∀s t. s ⊆ t ⇒ s ≼ t
- CARD_LE_SQUARE
-
⊢ ∀s. s ≼ s × s
- CARD_LE_RELATIONAL
-
⊢ ∀R s.
(∀x y y'. x ∈ s ∧ R x y ∧ R x y' ⇒ (y = y')) ⇒
{y | ∃x. x ∈ s ∧ R x y} ≼ s
- CARD_LE_REFL
-
⊢ ∀s. s ≼ s
- CARD_LE_MUL
-
⊢ ∀s s' t t'. s ≼ s' ∧ t ≼ t' ⇒ s × t ≼ s' × t'
- CARD_LE_LT
-
⊢ ∀s t. s ≼ t ⇔ s ≺ t ∨ s ≈ t
- CARD_LE_INJ
-
⊢ ∀s t.
FINITE s ∧ FINITE t ∧ CARD s ≤ CARD t ⇒
∃f. IMAGE f s ⊆ t ∧ ∀x y. x ∈ s ∧ y ∈ s ∧ (f x = f y) ⇒ (x = y)
- CARD_LE_INFINITE
-
⊢ ∀s t. INFINITE s ∧ s ≼ t ⇒ INFINITE t
- CARD_LE_IMAGE_GEN
-
⊢ ∀f s t. t ⊆ IMAGE f s ⇒ t ≼ s
- CARD_LE_IMAGE
-
⊢ ∀f s. IMAGE f s ≼ s
- CARD_LE_FINITE
-
⊢ ∀s t. FINITE t ∧ s ≼ t ⇒ FINITE s
- CARD_LE_EQ_SUBSET
-
⊢ ∀s t. s ≼ t ⇔ ∃u. u ⊆ t ∧ s ≈ u
- CARD_LE_EMPTY
-
⊢ ∀s. s ≼ ∅ ⇔ (s = ∅)
- CARD_LE_COUNTABLE
-
⊢ ∀s t. COUNTABLE t ∧ s ≼ t ⇒ COUNTABLE s
- CARD_LE_CONG
-
⊢ ∀s s' t t'. s ≈ s' ∧ t ≈ t' ⇒ (s ≼ t ⇔ s' ≼ t')
- CARD_LE_CARD_IMP
-
⊢ ∀s t. FINITE t ∧ s ≼ t ⇒ CARD s ≤ CARD t
- CARD_LE_CARD
-
⊢ ∀s t. FINITE s ∧ FINITE t ⇒ (s ≼ t ⇔ CARD s ≤ CARD t)
- CARD_LE_ANTISYM
-
⊢ ∀s t. s ≼ t ∧ t ≼ s ⇔ s ≈ t
- CARD_LE_ADDR
-
⊢ ∀s t. s ≼ s + t
- CARD_LE_ADDL
-
⊢ ∀s t. t ≼ s + t
- CARD_LE_ADD
-
⊢ ∀s s' t t'. s ≼ s' ∧ t ≼ t' ⇒ s + t ≼ s' + t'
- CARD_LDISTRIB
-
⊢ ∀s t u. s × (t + u) ≈ s × t + s × u
- CARD_INFINITE_CONG
-
⊢ ∀s t. s ≈ t ⇒ (INFINITE s ⇔ INFINITE t)
- CARD_IMAGE_LE
-
⊢ ∀f s. FINITE s ⇒ CARD (IMAGE f s) ≤ CARD s
- CARD_IMAGE_INJ
-
⊢ ∀f s.
(∀x y. x ∈ s ∧ y ∈ s ∧ (f x = f y) ⇒ (x = y)) ∧ FINITE s ⇒
(CARD (IMAGE f s) = CARD s)
- CARD_HAS_SIZE_CONG
-
⊢ ∀s t n. s HAS_SIZE n ∧ s ≈ t ⇒ t HAS_SIZE n
- CARD_FINITE_CONG
-
⊢ ∀s t. s ≈ t ⇒ (FINITE s ⇔ FINITE t)
- CARD_EQ_TRANS
-
⊢ ∀s t u. s ≈ t ∧ t ≈ u ⇒ s ≈ u
- CARD_EQ_SYM
-
⊢ ∀s t. s ≈ t ⇔ t ≈ s
- CARD_EQ_REFL
-
⊢ ∀s. s ≈ s
- CARD_EQ_IMP_LE
-
⊢ ∀s t. s ≈ t ⇒ s ≼ t
- CARD_EQ_IMAGE
-
⊢ ∀f s. (∀x y. x ∈ s ∧ y ∈ s ∧ (f x = f y) ⇒ (x = y)) ⇒ IMAGE f s ≈ s
- CARD_EQ_FINITE
-
⊢ ∀s t. FINITE t ∧ s ≈ t ⇒ FINITE s
- CARD_EQ_EMPTY
-
⊢ ∀s. s ≈ ∅ ⇔ (s = ∅)
- CARD_EQ_COUNTABLE
-
⊢ ∀s t. COUNTABLE t ∧ s ≈ t ⇒ COUNTABLE s
- CARD_EQ_CONG
-
⊢ ∀s s' t t'. s ≈ s' ∧ t ≈ t' ⇒ (s ≈ t ⇔ s' ≈ t')
- CARD_EQ_CARD_IMP
-
⊢ ∀s t. FINITE t ∧ s ≈ t ⇒ (CARD s = CARD t)
- CARD_EQ_CARD
-
⊢ ∀s t. FINITE s ∧ FINITE t ⇒ (s ≈ t ⇔ (CARD s = CARD t))
- CARD_EQ_BIJECTIONS
-
⊢ ∀s t.
FINITE s ∧ FINITE t ∧ (CARD s = CARD t) ⇒
∃f g.
(∀x. x ∈ s ⇒ f x ∈ t ∧ (g (f x) = x)) ∧
∀y. y ∈ t ⇒ g y ∈ s ∧ (f (g y) = y)
- CARD_EQ_BIJECTION
-
⊢ ∀s t.
FINITE s ∧ FINITE t ∧ (CARD s = CARD t) ⇒
∃f.
(∀x. x ∈ s ⇒ f x ∈ t) ∧ (∀y. y ∈ t ⇒ ∃x. x ∈ s ∧ (f x = y)) ∧
∀x y. x ∈ s ∧ y ∈ s ∧ (f x = f y) ⇒ (x = y)
- CARD_DISJOINT_UNION
-
⊢ ∀s t. (s ∩ t = ∅) ⇒ s ∪ t ≈ s + t
- CARD_COUNTABLE_CONG
-
⊢ ∀s t. s ≈ t ⇒ (COUNTABLE s ⇔ COUNTABLE t)
- CARD_CART_UNIV
-
⊢ FINITE 𝕌(:α) ⇒ (CARD 𝕌(:α) = CARD 𝕌(:α) ** 1)
- CARD_CARDEQ_I
-
⊢ FINITE s1 ∧ FINITE s2 ∧ (CARD s1 = CARD s2) ⇒ s1 ≈ s2
- CARD_BOOL
-
⊢ CARD 𝕌(:bool) = 2
- CARD_BIGUNION_LE
-
⊢ ∀s t m n.
s HAS_SIZE m ∧ (∀x. x ∈ s ⇒ FINITE (t x) ∧ CARD (t x) ≤ n) ⇒
CARD (BIGUNION {t x | x ∈ s}) ≤ m * n
- CARD_BIGUNION
-
⊢ INFINITE k ∧ s1 ≼ k ∧ (∀e. e ∈ s1 ⇒ e ≼ k) ⇒ BIGUNION s1 ≼ k
- CARD_ADD_SYM
-
⊢ ∀s t. s + t ≈ t + s
- CARD_ADD_LE_MUL_INFINITE
-
⊢ ∀s. INFINITE s ⇒ s + s ≼ s × s
- CARD_ADD_FINITE_EQ
-
⊢ ∀s t. FINITE (s + t) ⇔ FINITE s ∧ FINITE t
- CARD_ADD_FINITE
-
⊢ ∀s t. FINITE s ∧ FINITE t ⇒ FINITE (s + t)
- CARD_ADD_CONG
-
⊢ ∀s s' t t'. s ≈ s' ∧ t ≈ t' ⇒ s + t ≈ s' + t'
- CARD_ADD_C
-
⊢ ∀s t. FINITE s ∧ FINITE t ⇒ (CARD (s + t) = CARD s + CARD t)
- CARD_ADD_ASSOC
-
⊢ ∀s t u. s + (t + u) ≈ s + t + u
- CARD_ADD_ABSORB_LE
-
⊢ ∀s t. INFINITE t ∧ s ≼ t ⇒ s + t ≼ t
- CARD_ADD_ABSORB
-
⊢ ∀s t. INFINITE t ∧ s ≼ t ⇒ s + t ≈ t
- CARD_ADD2_ABSORB_LT
-
⊢ ∀s t u. INFINITE u ∧ s ≺ u ∧ t ≺ u ⇒ s + t ≺ u
- CARD_ADD2_ABSORB_LE
-
⊢ ∀s t u. INFINITE u ∧ s ≼ u ∧ t ≼ u ⇒ s + t ≼ u
- CANTOR_THM_UNIV
-
⊢ 𝕌(:α) ≺ 𝕌(:α -> bool)
- CANTOR_THM
-
⊢ ∀s. s ≺ {t | t ⊆ s}
- CANTOR
-
⊢ A ≺ POW A
- BIJECTIVE_INVERSES
-
⊢ ∀f s t.
(∀x. x ∈ s ⇒ f x ∈ t) ∧ (∀y. y ∈ t ⇒ ∃!x. x ∈ s ∧ (f x = y)) ⇔
(∀x. x ∈ s ⇒ f x ∈ t) ∧
∃g.
(∀y. y ∈ t ⇒ g y ∈ s) ∧ (∀y. y ∈ t ⇒ (f (g y) = y)) ∧
∀x. x ∈ s ⇒ (g (f x) = x)
- BIJECTIVE_INJECTIVE_SURJECTIVE
-
⊢ ∀f s t.
(∀x. x ∈ s ⇒ f x ∈ t) ∧ (∀y. y ∈ t ⇒ ∃!x. x ∈ s ∧ (f x = y)) ⇔
(∀x. x ∈ s ⇒ f x ∈ t) ∧ (∀x y. x ∈ s ∧ y ∈ s ∧ (f x = f y) ⇒ (x = y)) ∧
∀y. y ∈ t ⇒ ∃x. x ∈ s ∧ (f x = y)
- bijections_cardeq
-
⊢ INFINITE s ⇒ bijns s ≈ POW s
- BIJ_functions_agree
-
⊢ ∀f g s t. BIJ f s t ∧ (∀x. x ∈ s ⇒ (f x = g x)) ⇒ BIJ g s t