Theory "option"

Parents     sum   one   relation

Signature

Type Arity
option 1
Constant Type
IS_NONE :α option -> bool
IS_SOME :α option -> bool
NONE :α option
OPTION_ALL :(α -> bool) -> α option -> bool
OPTION_APPLY :(β -> α) option -> β option -> α option
OPTION_BIND :β option -> (β -> α option) -> α option
OPTION_CHOICE :α option -> α option -> α option
OPTION_GUARD :bool -> unit option
OPTION_IGNORE_BIND :β option -> α option -> α option
OPTION_JOIN :α option option -> α option
OPTION_MAP :(α -> β) -> α option -> β option
OPTION_MAP2 :(β -> γ -> α) -> β option -> γ option -> α option
OPTION_MCOMP :(β -> α option) -> (γ -> β option) -> γ -> α option
OPTREL :(α -> β -> bool) -> α option -> β option -> bool
SOME :α -> α option
THE :α option -> α
option_ABS :α + unit -> α option
option_CASE :α option -> β -> (α -> β) -> β
option_REP :α option -> α + unit
some :(α -> bool) -> α option

Definitions

THE_DEF
⊢ ∀x. THE (SOME x) = x
some_def
⊢ ∀P. $some P = if ∃x. P x then SOME (@x. P x) else NONE
SOME_DEF
⊢ ∀x. SOME x = option_ABS (INL x)
OPTREL_def
⊢ ∀R x y.
      OPTREL R x y ⇔
      (x = NONE) ∧ (y = NONE) ∨
      ∃x0 y0. (x = SOME x0) ∧ (y = SOME y0) ∧ R x0 y0
option_TY_DEF
⊢ ∃rep. TYPE_DEFINITION (λx. T) rep
option_REP_ABS_DEF
⊢ (∀a. option_ABS (option_REP a) = a) ∧
  ∀r. (λx. T) r ⇔ (option_REP (option_ABS r) = r)
OPTION_MCOMP_def
⊢ ∀g f m. OPTION_MCOMP g f m = OPTION_BIND (f m) g
OPTION_MAP_DEF
⊢ (∀f x. OPTION_MAP f (SOME x) = SOME (f x)) ∧ ∀f. OPTION_MAP f NONE = NONE
OPTION_MAP2_DEF
⊢ ∀f x y.
      OPTION_MAP2 f x y =
      if IS_SOME x ∧ IS_SOME y then SOME (f (THE x) (THE y)) else NONE
OPTION_JOIN_DEF
⊢ (OPTION_JOIN NONE = NONE) ∧ ∀x. OPTION_JOIN (SOME x) = x
OPTION_IGNORE_BIND_def
⊢ ∀m1 m2. OPTION_IGNORE_BIND m1 m2 = OPTION_BIND m1 (K m2)
OPTION_GUARD_def
⊢ (OPTION_GUARD T = SOME ()) ∧ (OPTION_GUARD F = NONE)
OPTION_CHOICE_def
⊢ (∀m2. OPTION_CHOICE NONE m2 = m2) ∧
  ∀x m2. OPTION_CHOICE (SOME x) m2 = SOME x
option_case_def
⊢ (∀v f. option_CASE NONE v f = v) ∧ ∀x v f. option_CASE (SOME x) v f = f x
OPTION_BIND_def
⊢ (∀f. OPTION_BIND NONE f = NONE) ∧ ∀x f. OPTION_BIND (SOME x) f = f x
OPTION_APPLY_def
⊢ (∀x. NONE <*> x = NONE) ∧ ∀f x. SOME f <*> x = OPTION_MAP f x
OPTION_ALL_def
⊢ (∀P. OPTION_ALL P NONE ⇔ T) ∧ ∀P x. OPTION_ALL P (SOME x) ⇔ P x
NONE_DEF
⊢ NONE = option_ABS (INR ())
IS_SOME_DEF
⊢ (∀x. IS_SOME (SOME x) ⇔ T) ∧ (IS_SOME NONE ⇔ F)
IS_NONE_DEF
⊢ (∀x. IS_NONE (SOME x) ⇔ F) ∧ (IS_NONE NONE ⇔ T)


Theorems

SOME_SOME_APPLY
⊢ SOME f <*> SOME x = SOME (f x)
some_intro
⊢ (∀x. P x ⇒ Q (SOME x)) ∧ ((∀x. ¬P x) ⇒ Q NONE) ⇒ Q ($some P)
some_F
⊢ (some x. F) = NONE
some_EQ
⊢ ((some x. x = y) = SOME y) ∧ ((some x. y = x) = SOME y)
some_elim
⊢ Q ($some P) ⇒ (∃x. P x ∧ Q (SOME x)) ∨ (∀x. ¬P x) ∧ Q NONE
SOME_APPLY_PERMUTE
⊢ f <*> SOME x = SOME (λf. f x) <*> f
SOME_11
⊢ ∀x y. (SOME x = SOME y) ⇔ (x = y)
OPTREL_SOME
⊢ (∀R x y. OPTREL R (SOME x) y ⇔ ∃z. (y = SOME z) ∧ R x z) ∧
  ∀R x y. OPTREL R x (SOME y) ⇔ ∃z. (x = SOME z) ∧ R z y
OPTREL_refl
⊢ (∀x. R x x) ⇒ ∀x. OPTREL R x x
OPTREL_O
⊢ ∀R1 R2. OPTREL (R1 ∘ᵣ R2) = OPTREL R1 ∘ᵣ OPTREL R2
OPTREL_MONO
⊢ (∀x y. P x y ⇒ Q x y) ⇒ OPTREL P x y ⇒ OPTREL Q x y
OPTREL_eq
⊢ OPTREL $= = $=
option_nchotomy
⊢ ∀opt. (opt = NONE) ∨ ∃x. opt = SOME x
OPTION_MCOMP_ID
⊢ (OPTION_MCOMP g SOME = g) ∧ (OPTION_MCOMP SOME f = f)
OPTION_MCOMP_ASSOC
⊢ OPTION_MCOMP f (OPTION_MCOMP g h) = OPTION_MCOMP (OPTION_MCOMP f g) h
OPTION_MAP_EQ_SOME
⊢ ∀f x y. (OPTION_MAP f x = SOME y) ⇔ ∃z. (x = SOME z) ∧ (y = f z)
OPTION_MAP_EQ_NONE_both_ways
⊢ ((OPTION_MAP f x = NONE) ⇔ (x = NONE)) ∧
  ((NONE = OPTION_MAP f x) ⇔ (x = NONE))
OPTION_MAP_EQ_NONE
⊢ ∀f x. (OPTION_MAP f x = NONE) ⇔ (x = NONE)
OPTION_MAP_CONG
⊢ ∀opt1 opt2 f1 f2.
      (opt1 = opt2) ∧ (∀x. (opt2 = SOME x) ⇒ (f1 x = f2 x)) ⇒
      (OPTION_MAP f1 opt1 = OPTION_MAP f2 opt2)
OPTION_MAP_COMPOSE
⊢ OPTION_MAP f (OPTION_MAP g x) = OPTION_MAP (f ∘ g) x
OPTION_MAP_CASE
⊢ OPTION_MAP f x = option_CASE x NONE (SOME ∘ f)
OPTION_MAP2_THM
⊢ (OPTION_MAP2 f (SOME x) (SOME y) = SOME (f x y)) ∧
  (OPTION_MAP2 f (SOME x) NONE = NONE) ∧
  (OPTION_MAP2 f NONE (SOME y) = NONE) ∧ (OPTION_MAP2 f NONE NONE = NONE)
OPTION_MAP2_SOME
⊢ (OPTION_MAP2 f o1 o2 = SOME v) ⇔
  ∃x1 x2. (o1 = SOME x1) ∧ (o2 = SOME x2) ∧ (v = f x1 x2)
OPTION_MAP2_NONE
⊢ (OPTION_MAP2 f o1 o2 = NONE) ⇔ (o1 = NONE) ∨ (o2 = NONE)
OPTION_MAP2_cong
⊢ ∀x1 x2 y1 y2 f1 f2.
      (x1 = x2) ∧ (y1 = y2) ∧
      (∀x y. (x2 = SOME x) ∧ (y2 = SOME y) ⇒ (f1 x y = f2 x y)) ⇒
      (OPTION_MAP2 f1 x1 y1 = OPTION_MAP2 f2 x2 y2)
OPTION_JOIN_EQ_SOME
⊢ ∀x y. (OPTION_JOIN x = SOME y) ⇔ (x = SOME (SOME y))
option_induction
⊢ ∀P. P NONE ∧ (∀a. P (SOME a)) ⇒ ∀x. P x
option_Induct
⊢ ∀P. (∀a. P (SOME a)) ∧ P NONE ⇒ ∀x. P x
OPTION_IGNORE_BIND_thm
⊢ (OPTION_IGNORE_BIND NONE m = NONE) ∧ (OPTION_IGNORE_BIND (SOME v) m = m)
OPTION_IGNORE_BIND_EQUALS_OPTION
⊢ ((OPTION_IGNORE_BIND m1 m2 = NONE) ⇔ (m1 = NONE) ∨ (m2 = NONE)) ∧
  ((OPTION_IGNORE_BIND m1 m2 = SOME y) ⇔ ∃x. (m1 = SOME x) ∧ (m2 = SOME y))
OPTION_GUARD_EQ_THM
⊢ ((OPTION_GUARD b = SOME ()) ⇔ b) ∧ ((OPTION_GUARD b = NONE) ⇔ ¬b)
OPTION_GUARD_COND
⊢ OPTION_GUARD b = if b then SOME () else NONE
option_CLAUSES
⊢ (∀x y. (SOME x = SOME y) ⇔ (x = y)) ∧ (∀x. THE (SOME x) = x) ∧
  (∀x. NONE ≠ SOME x) ∧ (∀x. SOME x ≠ NONE) ∧ (∀x. IS_SOME (SOME x) ⇔ T) ∧
  (IS_SOME NONE ⇔ F) ∧ (∀x. IS_NONE x ⇔ (x = NONE)) ∧
  (∀x. ¬IS_SOME x ⇔ (x = NONE)) ∧ (∀x. IS_SOME x ⇒ (SOME (THE x) = x)) ∧
  (∀x. option_CASE x NONE SOME = x) ∧ (∀x. option_CASE x x SOME = x) ∧
  (∀x. IS_NONE x ⇒ (option_CASE x e f = e)) ∧
  (∀x. IS_SOME x ⇒ (option_CASE x e f = f (THE x))) ∧
  (∀x. IS_SOME x ⇒ (option_CASE x e SOME = x)) ∧
  (∀v f. option_CASE NONE v f = v) ∧
  (∀x v f. option_CASE (SOME x) v f = f x) ∧
  (∀f x. OPTION_MAP f (SOME x) = SOME (f x)) ∧
  (∀f. OPTION_MAP f NONE = NONE) ∧ (OPTION_JOIN NONE = NONE) ∧
  ∀x. OPTION_JOIN (SOME x) = x
OPTION_CHOICE_NONE
⊢ OPTION_CHOICE m1 NONE = m1
OPTION_CHOICE_EQ_NONE
⊢ (OPTION_CHOICE m1 m2 = NONE) ⇔ (m1 = NONE) ∧ (m2 = NONE)
option_CASES
⊢ ∀opt. (∃x. opt = SOME x) ∨ (opt = NONE)
option_case_SOME_ID
⊢ ∀x. option_CASE x x SOME = x
option_case_ID
⊢ ∀x. option_CASE x NONE SOME = x
option_case_eq
⊢ (option_CASE opt nc sc = v) ⇔
  (opt = NONE) ∧ (nc = v) ∨ ∃x. (opt = SOME x) ∧ (sc x = v)
option_case_cong
⊢ ∀M M' v f.
      (M = M') ∧ ((M' = NONE) ⇒ (v = v')) ∧ (∀x. (M' = SOME x) ⇒ (f x = f' x)) ⇒
      (option_CASE M v f = option_CASE M' v' f')
option_case_compute
⊢ option_CASE x e f = if IS_SOME x then f (THE x) else e
OPTION_BIND_SOME
⊢ ∀opt. OPTION_BIND opt SOME = opt
OPTION_BIND_EQUALS_OPTION
⊢ ((OPTION_BIND p f = NONE) ⇔ (p = NONE) ∨ ∃x. (p = SOME x) ∧ (f x = NONE)) ∧
  ((OPTION_BIND p f = SOME y) ⇔ ∃x. (p = SOME x) ∧ (f x = SOME y))
OPTION_BIND_cong
⊢ ∀o1 o2 f1 f2.
      (o1 = o2) ∧ (∀x. (o2 = SOME x) ⇒ (f1 x = f2 x)) ⇒
      (OPTION_BIND o1 f1 = OPTION_BIND o2 f2)
option_Axiom
⊢ ∀e f. ∃fn. (fn NONE = e) ∧ ∀x. fn (SOME x) = f x
OPTION_APPLY_o
⊢ SOME $o <*> f <*> g <*> x = f <*> (g <*> x)
OPTION_APPLY_MAP2
⊢ OPTION_MAP f x <*> y = OPTION_MAP2 f x y
OPTION_ALL_MONO
⊢ (∀x. P x ⇒ P' x) ⇒ OPTION_ALL P opt ⇒ OPTION_ALL P' opt
OPTION_ALL_CONG
⊢ ∀opt opt' P P'.
      (opt = opt') ∧ (∀x. (opt' = SOME x) ⇒ (P x ⇔ P' x)) ⇒
      (OPTION_ALL P opt ⇔ OPTION_ALL P' opt')
NOT_SOME_NONE
⊢ ∀x. SOME x ≠ NONE
NOT_NONE_SOME
⊢ ∀x. NONE ≠ SOME x
NOT_IS_SOME_EQ_NONE
⊢ ∀x. ¬IS_SOME x ⇔ (x = NONE)
IS_SOME_MAP
⊢ IS_SOME (OPTION_MAP f x) ⇔ IS_SOME x
IS_SOME_EXISTS
⊢ ∀opt. IS_SOME opt ⇔ ∃x. opt = SOME x
IS_SOME_BIND
⊢ IS_SOME (OPTION_BIND x g) ⇒ IS_SOME x
IS_NONE_EQ_NONE
⊢ ∀x. IS_NONE x ⇔ (x = NONE)
IF_NONE_EQUALS_OPTION
⊢ (((if P then X else NONE) = NONE) ⇔ P ⇒ IS_NONE X) ∧
  (((if P then NONE else X) = NONE) ⇔ IS_SOME X ⇒ P) ∧
  (((if P then X else NONE) = SOME x) ⇔ P ∧ (X = SOME x)) ∧
  (((if P then NONE else X) = SOME x) ⇔ ¬P ∧ (X = SOME x))
IF_EQUALS_OPTION
⊢ (((if P then SOME x else NONE) = NONE) ⇔ ¬P) ∧
  (((if P then NONE else SOME x) = NONE) ⇔ P) ∧
  (((if P then SOME x else NONE) = SOME y) ⇔ P ∧ (x = y)) ∧
  (((if P then NONE else SOME x) = SOME y) ⇔ ¬P ∧ (x = y))
FORALL_OPTION
⊢ (∀opt. P opt) ⇔ P NONE ∧ ∀x. P (SOME x)
EXISTS_OPTION
⊢ ((∃opt. P opt) ⇔ P NONE) ∨ ∃x. P (SOME x)
datatype_option
⊢ DATATYPE (option NONE SOME)